Answer:
13. 200
14. 8,300
15. 500
16. 2,500
Step-by-step explanation:
13. It is more than 4
14. It is more than 4
15. It is less than 4
16. It is more than 4
Answer:
60
Step-by-step explanation:
5+5+5+5+5+5+5+5+5+5+5+5
Answer:
Yes, the given table represent an exponential function.
Step-by-step explanation:
Given table is :
x y
1 4
2 16
3 64
4 256
Now we need to identify if the given table represent an exponential function or not. To find that we need to check if we can write the numbers in y-column in form of exponential function
.
We see that y-values are basically powers of 4 so we can write the related function as
.
Which is clearly in form of
.
Hence yes, the given table represent an exponential function.
Answer:
It means
also converges.
Step-by-step explanation:
The actual Series is::

The method we are going to use is comparison method:
According to comparison method, we have:

If series one converges, the second converges and if second diverges series, one diverges
Now Simplify the given series:
Taking"n^2"common from numerator and "n^6"from denominator.
![=\frac{n^2[7-\frac{4}{n}+\frac{3}{n^2}]}{n^6[\frac{12}{n^6}+2]} \\\\=\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{n^4[\frac{12}{n^6}+2]}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bn%5E2%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7Bn%5E6%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7Bn%5E4%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D)
![\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\ \ \ \ \ \ \ \ \sum_{n=1}^{inf}b_n=\sum_{n=1}^{inf} \frac{1}{n^4}](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7Binf%7Da_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5Csum_%7Bn%3D1%7D%5E%7Binf%7Db_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%20%5Cfrac%7B1%7D%7Bn%5E4%7D)
Now:
![\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\ \\\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\=\frac{7-\frac{4}{inf}+\frac{3}{inf}}{\frac{12}{inf}+2}\\\\=\frac{7}{2}](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7Binf%7Da_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%5C%20%5C%5C%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%5C%3D%5Cfrac%7B7-%5Cfrac%7B4%7D%7Binf%7D%2B%5Cfrac%7B3%7D%7Binf%7D%7D%7B%5Cfrac%7B12%7D%7Binf%7D%2B2%7D%5C%5C%5C%5C%3D%5Cfrac%7B7%7D%7B2%7D)
So a_n is finite, so it converges.
Similarly b_n converges according to p-test.
P-test:
General form:

if p>1 then series converges. In oue case we have:

p=4 >1, so b_n also converges.
According to comparison test if both series converges, the final series also converges.
It means
also converges.
Answer:30
Step-by-step explanation: