Answer:
I cant see
Step-by-step explanation:
Check the picture below
now, <span>26°35' is just 26bdegrees and 35 minutes
your calculator most likely will have a button [ </span><span>° ' " ] to enter degrees and minutes and seconds
there are 60 minutes in 1 degree and 60 seconds in 1 minute
so.. you could also just convert the 35' to 35/60 degrees
so </span>
![\bf 26^o35'\implies 26+\frac{35}{60}\implies \cfrac{1595}{60}\iff \cfrac{319}{12} \\\\\\ tan(26^o35')\iff tan\left[ \left( \cfrac{391}{12} \right)^o \right]](https://tex.z-dn.net/?f=%5Cbf%2026%5Eo35%27%5Cimplies%2026%2B%5Cfrac%7B35%7D%7B60%7D%5Cimplies%20%5Ccfrac%7B1595%7D%7B60%7D%5Ciff%20%5Ccfrac%7B319%7D%7B12%7D%0A%5C%5C%5C%5C%5C%5C%0Atan%2826%5Eo35%27%29%5Ciff%20tan%5Cleft%5B%20%5Cleft%28%20%5Ccfrac%7B391%7D%7B12%7D%20%5Cright%29%5Eo%20%5Cright%5D)
now, the angle is in degrees, thus, make sure your calculator is in Degree mode
Answer: 120 seconds
Step-by-step explanation: In order to find the maximum value of a function, you can take the derivative of the function and equalize the result to 0.
f'(x)=(-3x^2 + 12x)'=-6x+12=0
x=2
When x is 2, the function will reach its maximum value.
f(2)=-3(2)^2 + 12.2 = -12 + 24 = 12
The maximum value (f(x)) is equal to 12 and the time passed is 2 minutes which is equal to 120 seconds.