answer:
you just have to shrink it down to 4cm then to 2cm
i wish i could help out more, but i would need to have access to the form
hopefully, this helps anyhow :)
good luck
have a great day !!
Answer:
Step-by-step explanation:
We have the equations
4x + 3y = 18 where x = the side of the square and y = the side of the triangle
For the areas:
A = x^2 + √3y/2* y/2
A = x^2 + √3y^2/4
From the first equation x = (18 - 3y)/4
So substituting in the area equation:
A = [ (18 - 3y)/4]^2 + √3y^2/4
A = (18 - 3y)^2 / 16 + √3y^2/4
Now for maximum / minimum area the derivative = 0 so we have
A' = 1/16 * 2(18 - 3y) * -3 + 1/4 * 2√3 y = 0
-3/8 (18 - 3y) + √3 y /2 = 0
-27/4 + 9y/8 + √3y /2 = 0
-54 + 9y + 4√3y = 0
y = 54 / 15.93
= 3.39 metres
So x = (18-3(3.39) / 4 = 1.96.
This is a minimum value for x.
So the total length of wire the square for minimum total area is 4 * 1.96
= 7.84 m
There is no maximum area as the equation for the total area is a quadratic with a positive leading coefficient.
Answer:
153 degrees is the measure of the supplementary angle
Answer:
See graph in attachment.
Step-by-step explanation:
The graph of
is a parabola that has its vertex at the origin.
The equation of the transformed graph is

The vertex of this transformed function is

Drag the blue graph up so that the vertex will now be at (4,3).
See graph in attachment.