The answer is 21/6
Explanation: the next number in the pattern would be 21 since this is linear
Answer:
24
Step-by-step explanation:
The value of 'x' is 24.2 and the value of 'y' is 46.5.
To solve this, we do the following steps.
<u>Step 1:</u> Divide 'y' into 2 parts, 'a' and 'b'. 'a' would be the lower leg of the 45°-45°-90° triangle, while 'b' is the lower leg of the 30°-60°-90° triangle.<em>
</em><u>Step 2:</u> Given the hypotenuse (34) of the 30°-60°-90° triangle, solve for 'b' using the cosine of 30°.
cos30° = b/34 [adjacent over hypotenuse]
b = 34cos30° [cross-multiply]
b = 29.4
<u>Step 3:</u> Solve for the 90° leg (the side opposite the 30° angle) using the Pythagorean Theorem. We will name this leg "h" (cuz height).
l² + l² = hyp²
29.4² + h² = 34²
h² = 1156 - 864.36
√h² = √291.64
h = 17.1
<u>Step 4:</u> Solve for 'x' by using the 45°-45°-90° triangle ratio (1:1:√2). √2 would be the hypotenuse of the 45°-45°-90° triangle, while 1 would be both congruent legs.
Side 'h' is one of the legs; side 'a' is the other. Since these legs are congruent, 'a' also measures 17.1. Now all we need to do is solve for 'x', which is our hypotenuse. To do this, we simply multiply the measure of side 'h' or 'a' by √2.
x = 17.1 × √2
x = 24.2
<u>Step 5:</u> Now that we got the value of 'x', solve for 'y' by adding the measures of sides 'a' and 'b' together.<em>
</em><u /> y = a + b
y = 17.1 + 29.4
y = 46.5
And there you have it! <em>Hope this helps.</em>
<em>
</em>
Answer:
the volume is
Step-by-step explanation:
This problem bothers on the mensuration of solid shapes, a cylinder.
Given data
Volume v = ?
Radius r = r in
Height h= 2r in
We are expected to solve for the volume of a cylinder, given the above data we can substitute it in the formula for volume of a cylinder to obtain our result
we know that the expression for the volume of a cylinder is
Hence the volume in terms of the radius is
Answer:
8.7
Step-by-step explanation:
hypotenuse= 14 =c
a=11
b=x
a²+b²=c²
b²=c²-a²
b²=14²-11²
b²= 196-121
b²=75
b=√75=5√3=8.7 rounded to the nearest tenth