Since there is no image given, the perimeter is the sum of measurement of the sides of the triangle. Assuming that the triangle is equilateral. Then the perimeter of the triangle is equal to
P = x + x + x
P = 3x
P = 30 mm
Answer:
<em>The fraction of the beads that are red is</em>
Step-by-step explanation:
<u>Algebraic Expressions</u>
A bag contains red (r), yellow (y), and blue (b) beads. We are given the following ratios:
r:y = 2:3
y:b = 5:4
We are required to find r:s, where s is the total of beads in the bag, or
s = r + y + b
Thus, we need to calculate:
![\displaystyle \frac{r}{r+y+b} \qquad\qquad [1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Br%7D%7Br%2By%2Bb%7D%20%20%20%20%20%20%20%5Cqquad%5Cqquad%20%20%20%20%5B1%5D)
Knowing that:
![\displaystyle \frac{r}{y}=\frac{2}{3} \qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Br%7D%7By%7D%3D%5Cfrac%7B2%7D%7B3%7D%20%20%20%20%20%20%5Cqquad%5Cqquad%20%20%20%20%5B2%5D)

Multiplying the equations above:

Simplifying:
![\displaystyle \frac{r}{b}=\frac{5}{6} \qquad\qquad [3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Br%7D%7Bb%7D%3D%5Cfrac%7B5%7D%7B6%7D%20%20%20%20%20%20%20%5Cqquad%5Cqquad%20%20%20%20%5B3%5D)
Dividing [1] by r:

Substituting from [2] and [3]:

Operating:



The fraction of the beads that are red is 
Since ABC is equilateral, all 3 sides have equal length. side AC is 8 units since side BC is 8 units.
Line BD is placed in the middle, making D the midpoint of side AC.
knowing this information we can determine that the length of DC is 4 units (half of AC)
since triangle BDC is a right triangle, we can use the side lengths in the pythagorean theorem to find the length of BD
a²+b²=c² where a & b = legs of triangle , and c= hypotenuse (longest side)
we are given the hypotenuse and found one leg so we can plug our values into the equation to find the third
4² + b²= 8²
16 + b² = 64
b² = 48
b = 
b= 4√3 or about 6.928 units
hope this helped