Answer:
The polynomial is a quadratic binomial
Step-by-step explanation:
we have

Classify the polynomial
<u>By the number of terms</u>
we know that
A polynomial with two terms is a binomial
<u>By the Degree of a Polynomial</u>
we know that
The degree of a polynomial is calculated by finding the largest exponent in the polynomial
In the given problem the largest exponent is 
so
Is a quadratic equation
therefore
The polynomial is a quadratic binomial
Answer:
- value: $66,184.15
- interest: $6,184.15
Step-by-step explanation:
The future value can be computed using the formula for an annuity due. It can also be found using any of a variety of calculators, apps, or spreadsheets.
__
<h3>formula</h3>
The formula for the value of an annuity due with payment P, interest rate r, compounded n times per year for t years is ...
FV = P(1 +r/n)((1 +r/n)^(nt) -1)/(r/n)
FV = 5000(1 +0.06/4)((1 +0.06/4)^(4·3) -1)/(0.06/4) ≈ 66,184.148
FV ≈ 66,184.15
<h3>calculator</h3>
The attached calculator screenshot shows the same result. The calculator needs to have the begin/end flag set to "begin" for the annuity due calculation.
__
<h3>a) </h3>
The future value of the annuity due is $66,184.15.
<h3>b)</h3>
The total interest earned is the difference between the total of deposits and the future value:
$66,184.15 -(12)(5000) = 6,184.15
A total of $6,184.15 in interest was earned by the annuity.
Answer:
The question is not so clear and complete
Step-by-step explanation:
But for questions like this, since the equation has been given, what is expected is for us to make comparison, compare the RHS with the LHS or by method of comparing coefficients.
We follow the stated conditions since we are told that b and c are both integers which are greater than 1 and b is less than the product of cb. from these conditions, we can compare and get the values of b , c and d.
Another approach is to assume values, make assumptions with the stated conditions, however, our assumptions must be valid and correct if we substitute the assumed values of b, c and d in the equation, it must arrive at the same answer for the RHS. i.e LHS = RHS
Answer:
-9
Step-by-step explanation:
The slope of the the solving equation is triple the slope of the given equation. Therefore, the y coefficient must also be triple of the other y coefficient.
10x-(3x7-3x2x)+18
10x-(21-3x2x)+18
10x-(21-6x)+18
10x-21+6x+18
16x-21+18
16x-3