See also Tangent to a circle). In any right triangle, the tangent of an angle is the length of the opposite side (O) divided by the length of the adjacent side (A). ... In a formula, it is written simply as 'tan'.
Answer:
8.6023
Step-by-step explanation:
length = √[(x2-x1)^2+(y2-y1)^2]
=√[(1-6)^2+(-1--8)^2] =√74 =8.6023
bearing in mind that "a" is the length of the traverse axis, and "c" is the distance from the center to either foci.
we know the center is at (0,0), we know there's a vertex at (-48,0), from the origin to -48, that's 48 units flat, meaning, the hyperbola is a horizontal one running over the x-axis whose a = 48.
we also know there's a focus point at (50,0), that's 50 units from the center, namely c = 50.
![\bf \textit{hyperbolas, horizontal traverse axis } \\\\ \cfrac{(x- h)^2}{ a^2}-\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2 + b ^2}\\ \textit{asymptotes}\quad y= k\pm \cfrac{b}{a}(x- h) \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bhyperbolas%2C%20horizontal%20traverse%20axis%20%7D%20%5C%5C%5C%5C%20%5Ccfrac%7B%28x-%20h%29%5E2%7D%7B%20a%5E2%7D-%5Ccfrac%7B%28y-%20k%29%5E2%7D%7B%20b%5E2%7D%3D1%20%5Cqquad%20%5Cbegin%7Bcases%7D%20center%5C%20%28%20h%2C%20k%29%5C%5C%20vertices%5C%20%28%20h%5Cpm%20a%2C%20k%29%5C%5C%20c%3D%5Ctextit%7Bdistance%20from%7D%5C%5C%20%5Cqquad%20%5Ctextit%7Bcenter%20to%20foci%7D%5C%5C%20%5Cqquad%20%5Csqrt%7B%20a%20%5E2%20%2B%20b%20%5E2%7D%5C%5C%20%5Ctextit%7Basymptotes%7D%5Cquad%20y%3D%20k%5Cpm%20%5Ccfrac%7Bb%7D%7Ba%7D%28x-%20h%29%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)

Answer: I believe its 50 because you would have to see 3 x what equals 150
Step-by-step explanation: