The answer of 6and7 irrational number is 6.875
Answer:
Option a.
![\lim_{x \to \frac{\pi}{2}}(3e)^{xcosx}=1](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%283e%29%5E%7Bxcosx%7D%3D1)
Step-by-step explanation:
You have the following limit:
![\lim_{x \to \frac{\pi}{2}{(3e)^{xcosx}](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cfrac%7B%5Cpi%7D%7B2%7D%7B%283e%29%5E%7Bxcosx%7D)
The method of direct substitution consists of substituting the value of
in the function and simplifying the expression obtained.
We then use this method to solve the limit by doing ![x=\frac{\pi}{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Cpi%7D%7B2%7D)
Therefore:
![\lim_{x \to \frac{\pi}{2}}{(3e)^{xcosx} = \lim_{x\to \frac{\pi}{2}}{(3e)^{\frac{\pi}{2}cos(\frac{\pi}{2})}](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%283e%29%5E%7Bxcosx%7D%20%3D%20%5Clim_%7Bx%5Cto%20%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%283e%29%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7Dcos%28%5Cfrac%7B%5Cpi%7D%7B2%7D%29%7D)
![cos(\frac{\pi}{2})=0\\](https://tex.z-dn.net/?f=cos%28%5Cfrac%7B%5Cpi%7D%7B2%7D%29%3D0%5C%5C)
By definition, any number raised to exponent 0 is equal to 1
So
![\lim_{x\to \frac{\pi}{2}}{(3e)^{\frac{\pi}{2}cos(\frac{\pi}{2})} = \lim_{x\to \frac{\pi}{2}}{(3e)^{\frac{\pi}{2}(0)}\\\\](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%283e%29%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7Dcos%28%5Cfrac%7B%5Cpi%7D%7B2%7D%29%7D%20%3D%20%5Clim_%7Bx%5Cto%20%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%283e%29%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%280%29%7D%5C%5C%5C%5C)
![\lim_{x\to \frac{\pi}{2}}{(3e)^{0}} = 1](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%283e%29%5E%7B0%7D%7D%20%3D%201)
Finally
![\lim_{x \to \frac{\pi}{2}}(3e)^{xcosx}=1](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%283e%29%5E%7Bxcosx%7D%3D1)
Answer:
undefined
Step-by-step explanation:
Sin(x) = 0 where x = 0
Cos(x) = 1 where x = 0
Cot(0) is undefined