<span>The pressure inside a coke bottle is really high. This helps keep the soda carbonated. That is, the additional pressure at the surface of the liquid inside the bottle forces the bubbles to stay dissolved within the soda. </span><span>When the coke is opened, there is suddenly a great pressure differential. The initial loud hiss that is heard is this pressure differential equalizing itself. All of the additional pressure found within the bottle pushes gas out of the bottle until the pressure inside the bottle is the same as the pressure outside the bottle. </span><span>However, once this occurs, the pressure inside the bottle is much lower and the gas bubbles that had previously been dissolved into the soda have nothing holding them in the liquid anymore so they start rising out of the liquid. As they reach the surface, they pop and force small explosions of soda. These explosions are the source of the popping and hissing that continues while the soda is opened to the outside air. Of course, after a while, the soda will become "flat" when the only gas left dissolved in the liquid will be the gas that is held back by the relatively weak atmospheric pressure.</span>
The temperature is held constant at (b) and (d). At these points, the substance is changing states. B is changing from solid to liquid and D is changing from liquid to gas
Answer:
ΔH3 = -110.5 kJ.
Explanation:
Hello!
In this case, by using the Hess Law, we can manipulate the given equation to obtain the combustion of C to CO as shown below:
C(s) + 1/2O2(g) --> CO(g)
Thus, by letting the first reaction to be unchanged:
C(s) + O2(g)--> CO2 (g) ; ΔH1 = -393.5 kJ
And the second one inverted:
CO2(g) --> CO(g) + 1/2O2(g) ; ΔH2= 283.0kJ
If we add them, we obtain:
C(s) + O2(g) + CO2(g) --> CO(g) + CO2 (g) + 1/2O2(g)
Whereas CO2 can be cancelled out and O2 subtracted:
C(s) + 1/2O2(g) --> CO(g)
Therefore, the required enthalpy of reaction is:
ΔH3 = -393.5 kJ + 283.0kJ
ΔH3 = -110.5 kJ
Best regards!
Answer:inform the lab instructor and get instructions
Explanation:
If you come across a chemical in the laboratory which has been wrongly labelled, do not be quick to dilute it or take any further action. The laboratory instructor who may have prepared the reagent himself or has better knowledge about the reagent should be contacted immediately so that he/she can give you instructions about what to do with the wrongly labelled reagent.