1) Change radical forms to fractional exponents using the rule:The n<span>th root of "</span>a number" = "that number" raised to the<span> reciprocal of n.
For example </span>
![\sqrt[n]{3} = 3^{ \frac{1}{n} }](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7B3%7D%20%3D%20%20%203%5E%7B%20%5Cfrac%7B1%7D%7Bn%7D%20%7D)
.
The square root of 3 (

) = 3 to the one-half power (

).
The 5th root of 3 (
![\sqrt[5]{3}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B3%7D%20)
) = 3 to the one-fifth power (

).
2) Now use the product of powers exponent rule to simplify:This rule says

. When two expressions with the same base (a, in this example) are multiplied, you
can add their exponents while keeping the same base.
You now have

. These two expressions have the same base, 3. That means you can add their exponents:
3) You can leave it in the form
or change it back into a radical ![\sqrt[10]{3^7}](https://tex.z-dn.net/?f=%20%5Csqrt%5B10%5D%7B3%5E7%7D%20)
------
Answer:
or
Answer:
B.(-1,2)
Step-by-step explanation:
In a function, there can not be two different values of y corresponding to the same value of x.
See the graph attached.
Here, the points on the graph are (1,2), (2,-3), (-2,-2) and (-3,1).
If we consider point (-2,2) then there will be two points corresponding to the same x value i.e. (-2,-2) and (-2,2).
Similarly, if we consider the point (2,-2) or (2.-1) then also there becomes more than one values of y for a single value of x i.e. x = 2.
So, if we consider the ordered pair (-1,2) then only the graph still represents a function. (Answer)
Answer: The depth of the snow has changed .4 inches. This is because it has melted in the warm weather. You can find the difference, by subtracting 1.6 from 2.
Step-by-step explanation:
2 - 1.6= .4 .4 would be your answer
Hope it helps!!!!
ans:A (60)
as it is opposite to 60degree and the theory of this is same with opposite number
Answer:
if n is an exponent, then n=2
Step-by-step explanation:
10 squared is 100
10*10=100