90.69 rounded to the nearest tenth.
Go to the tenth value of the number and look to the number right of that. If it is 5 or higher, you round up; 4 or less, round down
9 is higher than 5 therefore you round up
90.69 becomes 90.7
Answer
Find out the length of OP .
To prove
As given
In △JKL, JO=44 in.
Now as shown in the diagram.
JP , MK, NL be the median of the △JKL and intresection of the JP , MK, NL be O .
Thus O be the centroid of the △JKL .
The centroid divides each median in a ratio of 2:1 .
Let us assume x be the scalar multiple of the OP and JO .
As given
JO = 44 in
2x = 44
x = 22 in
Thus the length of the OP IS 22 in .
9 squares because if there are 18 triangles in it then you divide 18 by 2 and get 9
Password to what exactly?
A. Area of ABCD - Area of DGA = Area of DEFG
s^2 - 1/2bh = s^2
(5)^2 - 1/2(4)(3) = (3)^2
25 - 1/2(12) = 9
25 - 24 = 9
1 not equal to 9
B. Area of ABCD - Area of GHIA = Area of DGA
s^2 - s^2 = 1/2bh
(5)^2 - (4)^2 = 1/2(4)(3)
25 - 16 = 1/2(12)
9 not equal to 6
C. Area of ABCD + Area of DGA = Area of GHIA
s^2 + 1/2bh = s^2
(5)^2 + 1/2(4)(3) = (4)^2
25 + 1/2(12) = 16
25 + 6 = 16
31 not equal to 16
D. Area of DEFG + Area of GHIA = Area of ABCD
s^2 + s^2 = s^2
(3)^2 + (4)^2 = (5)^2
9 + 16 = 25
25 = 25
The answer is D.