Add 3 to both sides so that the equation becomes -2x^2 + 5x + 5 = 0.
To find the solutions to this equation, we can apply the quadratic formula. This quadratic formula solves equations of the form ax^2 + bx + c = 0
x = [ -b ± √(b^2 - 4ac) ] / (2a)
x = [ -5 ± √(5^2 - 4(-2)(5)) ] / ( 2(-2) )
x = [-5 ± √(25 - (-40) ) ] / ( -4 )
x = [-5 ± √(65) ] / ( -4)
x = [-5 ± sqrt(65) ] / ( -4 )
x = 5/4 ± -sqrt(65)/4
The answers are 5/4 + sqrt(65)/4 and 5/4 - sqrt(65)/4..
Answer:
22 units
Step-by-step explanation:
The perimeter of a polygon is said to be the sum of the length of it's sides.
From the question, we have 5 vertices. This means the polygon is a pentagon. It's given vertices are
A = (−1, 3)
B = (−1, 6)
C = (2, 10)
D = (5, 6)
E = (5, 3)
To find the distance between two points, we use the formula
d = √[(y2 - y1)² + (x2 - x1)²]
Between A and B, we have
d(ab) = √[(6 - 3)² + (-1 --1)²]
d(ab) = √(3²) + 0
d(ab) = √9 = 3
Between B and C, we have
d(bc) = √[(10 - 6)² + (2 --1)²]
d(bc) = √[4² + 3²]
d(bc) = √(16 + 9) = √25 = 5
Between C and D, we have
d(cd) = √[(6 - 10)² + (5 - 2)²]
d(cd) = √[(-4)² + 3²]
d(cd) = √(16 + 9) = √25 = 5
Between D and E, we have
d(de) = √[(3 - 6)² + (5 - 5)²]
d(de) = √(-3)² + 0
d(de) = √9 = 3
Between E and A, we have
d(ea) = √[(3 - 3)² + (5 --1)²]
d(ea) = √[0 + (6)²]
d(ea) = √36 = 6
The perimeter is given as
d(ab) + d(bc) + d(cd) + d(de) + d(ea) =
3 + 5 + 5 + 3 + 6 = 22 units
Answer:
Will
Step-by-step explanation:
The key word in this sentence is tomorrow, because tomorrow is in the future, therefore your answer is will.
The interest would be $123.5
Answer:
C=44/2
c=22
Two time c is equal to 44
one time c is equal to 22