Correct question :
If the perimeters of each shape are equal, which equation can be used to find the value of x? A triangle with base x + 2, height x, and side length x + 4. A rectangle with length of x + 3 and width of one-half x. (x + 4) + x + (x + 2) = one-half x + (x + 3) (x + 2) + x + (x + 4) = 2 (one-half x) + 2 (x + 3) 2 (x) + 2 (x + 2) = 2 (one-half x) + 2 (x + 3) x + (x + 2) + (x + 4) = 2 (x + 3 and one-half)
Answer: (x + 2) + x + (x + 4) = 2 (one-half x) + 2 (x + 3)
Step-by-step explanation:
Given the following :
A triangle with base x + 2, height x, and side length x + 4 - - - -
b = x + 2 ; a = x ; c = x + 4
Perimeter (P) of a triangle :
P = a + b + c
P =( x + 2) + x + (x + 4) - - - (1)
A rectangle with length of x + 3 and width of one-half x
l = x + 3 ; w = 1/2 x
Perimeter of a rectangle (P) = 2(l+w)
P = 2(x+3) + 2(1/2x)
If perimeter of each same are the same ; then;
(1) = (2)
(x + 2) + x + (x + 4) = 2(x+3) + 2(1/2x)
Answer:
25%
Step-by-step explanation:
50 is 25% of 200, the price went down by $50
brainliest???
Answer:
(-19, 55)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -3x - 2
5x + 2y = 15
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 5x + 2(-3x - 2) = 15
- Distribute 2: 5x - 6x - 4 = 15
- Combine like terms: -x - 4 = 15
- Isolate <em>x</em> term: -x = 19
- Isolate <em>x</em>: x = -19
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define original equation: y = -3x - 2
- Substitute in <em>x</em>: y = -3(-19) - 2
- Multiply: y = 57 - 2
- Subtract: y = 55
The product is 1,127.98853 ⇨ 5 digits follow after the decimal point. Hope that helps
Rewrite it from least to greatest and set it up like shown