The point-slope form:

We have the point (4, -6) and the slope m = 3/5. Substitute:

Answer:
Area covered by the fences will be 16.1 unit²
Step-by-step explanation:
Let the first parabola is represented by the function f(x) = 6x²
and second parabola by g(x) = x² + 9
point of intersection of the graphs will be determined when f(x) = g(x)
6x² = x² + 9
5x² = 9
x² = 1.8
x = ± 1.34
Now we will find the area between these curves drawn on the graph.
Area = ![\int_{-1.34}^{1.34}[f(x)-g(x)]dx=\int_{-1.34}^{1.34}[6x^{2}-(x^{2}+9)]dx](https://tex.z-dn.net/?f=%5Cint_%7B-1.34%7D%5E%7B1.34%7D%5Bf%28x%29-g%28x%29%5Ddx%3D%5Cint_%7B-1.34%7D%5E%7B1.34%7D%5B6x%5E%7B2%7D-%28x%5E%7B2%7D%2B9%29%5Ddx)
= 
= ![[\frac{5}{3}x^{3}-9x]_{-1.34}^{1.34}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B5%7D%7B3%7Dx%5E%7B3%7D-9x%5D_%7B-1.34%7D%5E%7B1.34%7D)
= ![[\frac{5}{3}(-1.34)^{3}-9(-1.34)-\frac{5}{3}(1.34)^{3}+9(1.34)]](https://tex.z-dn.net/?f=%5B%5Cfrac%7B5%7D%7B3%7D%28-1.34%29%5E%7B3%7D-9%28-1.34%29-%5Cfrac%7B5%7D%7B3%7D%281.34%29%5E%7B3%7D%2B9%281.34%29%5D)
= ![[-4.01+12.06-4.01+12.06]](https://tex.z-dn.net/?f=%5B-4.01%2B12.06-4.01%2B12.06%5D)
= 16.1 unit²
The surface area of a cone is equal to the base plus the lateral area.
The base is a circle, and has a diameter of 16 meters.
The radius is always half the diameter, so it is 8 meters.
The area of a circle = πr², where r is the radius. π(8)² = 64π ≈ 201.06193
The area of the base is ≈ 201.06193.
To find the lateral area of the cone, we need to find the slant height.
Since the height, radius, and slant height of the cone form a right triangle, we can use the Pythagorean Theorem to find the slant height with what we are given.
radius² + height² = slant height²
8² + 37² = slant height²
64 + 1369 = slant height²
1433 = slant height²
slant height = √1433
The lateral area of a cone is equal to πrl, where r = radius and l = slant height.
πrl = π(8)(√1433) ≈ 951.39958
(there are other formulas which do the same thing, but it doesn't matter.)
Now we add the lateral area and base together to find our surface area.
201.06193 + 951.39958 = 1152.46151 which rounds to C. 1,152 m².
Answer:
the first one I guess
Step-by-step explanation: