an = a1r^(n-1)
a5 = a1 r^(5-1)
-6 =a1 r^4
a2 = a1 r^(2-1)
-48 = a1 r
divide
-6 =a1 r^4
---------------- yields 1/8 = r^3 take the cube root or each side
-48 = a1 r 1/2 = r
an = a1r^(n-1)
an = a1 (1/2)^ (n-1)
-48 = a1 (1/2) ^1
divide by 1/2
-96 = a1
an = -96 (1/2)^ (n-1)
the sum
Sn = a1[(r^n - 1/(r - 1)]
S18 = -96 [( (1/2) ^17 -1/ (1/2 -1)]
=-96 [ (1/2) ^ 17 -1 /-1/2]
= 192 * [-131071/131072]
approximately -192
Answer:
x = ±i√2
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Multiplication Property of Equality
Division Property of Equality
Addition Property of Equality
Subtraction Property of Equality<u>
</u>
<u>Algebra II</u>
Imaginary root <em>i</em>
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
5x² - 2 = -12
<u>Step 2: Solve for </u><em><u>x</u></em>
- [Addition Property of Equality] Add 2 on both sides: 5x² = -10
- [Division Property of Equality] Divide 5 on both sides: x² = -2
- [Equality Property] Square root both sides: x = ±√-2
- Rewrite: x = ±√-1 · √2
- Simplify: x = ±i√2
X^2-5x+5x-25 (multiply (x-5) with (x+5))
X^2-25 ( -5x+5x =0)
The problem seems confusing is it supposed to say y=?
Answer:
Step-by-step explanation:
The A