f(x) is a quadratic equation with the x-side squared and a is positive which means that the graph of the function is a parabola facing up. The range of f(x) is given by {y|y ≥ k}, where k is the y-coordinate of the vertex.
, written in vertex form is
, where (h, k) = (-1, -11)
Therefore, range ={y|y ≥ -11}
Sum of angles In all triangles are 180....line DAC is horizontal and therefore is 180 degrees ....so minus 180 degrees from 105 and you get 75 degrees....and since the sum of all angles in a triangle is 180...add 75 and 67 which would be 142 degrees ...then minus 142 from 180 degrees to get 38 degrees for x
Answer:
The cosine function to model the height of a water particle above and below the mean water line is h = 2·cos((π/30)·t)
Step-by-step explanation:
The cosine function equation is given as follows h = d + a·cos(b(x - c))
Where:
= Amplitude
2·π/b = The period
c = The phase shift
d = The vertical shift
h = Height of the function
x = The time duration of motion of the wave, t
The given data are;
The amplitude
= 2 feet
Time for the wave to pass the dock
The number of times the wave passes a point in each cycle = 2 times
Therefore;
The time for each complete cycle = 2 × 30 seconds = 60 seconds
The time for each complete cycle = Period = 2·π/b = 60
b = π/30 =
Taking the phase shift as zero, (moving wave) and the vertical shift as zero (movement about the mean water line), we have
h = 0 + 2·cos(π/30(t - 0)) = 2·cos((π/30)·t)
The cosine function is h = 2·cos((π/30)·t).
2x^3-11x^2+16x-3
the answew is above^^^^^^^^^^^^^