We know that:
3x + 10y = 7
We also know that:
x - 10y = 29
Which means that:
x = 29 + 10y
If, x = 29 + 10y,
3(29 + 10y) + 10y = 7
3*29 + 30y + 10y = 7
3(20+9) + 40y = 7
60 + 27 + 40y = 7
87 + 40y = 7
40y = 7 - 87
40y= -80
y=(-80)/40
y=-2
Answer y=-2.
If y=-2,
x-10(-2)=29
x+20=29
x=29-20
x=9
Let's see if these results are true:
3(9)+10(-2)=7
27-20=7 (Correct)
-----------
9-10(-2)=29
9+20=29 (Correct)
Answer once again:
y=-2
We are given the function:
g(n) =

We need to find what g(-3) equals.
What the question is asking is what is the resulting value after you plug in -3 as n to the function. Meaning you replace the n that is in the function with -3.
g(-3) =

Remember back to the order of operations.
Parenthesis
Exponents
Multiplication
Division
Addition
Subtraction
For this problem we can keep the fraction as it is (unless you are permitted to use a calculator... if that is the case then just plug all that into a calculator) and keep going to the exponent.
Negative exponents make fractions FLIP. So our fraction will look like this:

Now that we have it without the negative exponent we need to distribute the cubed power to each number in the fraction (which is essentially the same as saying this:

)

We ARE NOT done! We still have this left:
g(-3) =

Multiplying by 3 you get the following:

So what does g(-3) equal? This right here:
The easiest way to do this is to plug in the numbers for the variebles and see if they equal the same in both sides. lets try the first one 5(1)+2(-3)=-1, multiply the nmbers to get 5-6=-1 now simplify to get the answer of -1=-1, they both equal the same so this means that the first option is the correct one
Hope this helps
I think these are the sums of perfect cubes.
A = (2x²)³ + (3)³
B = (x³)³ + (1)³
D = (x²)³ + (x)³
E = (3x³)³ + (x^4)³
Resposta:
Primer rectangle:
Amplada = 11
Longitud = 14
Segon rectangle:
Amplada = 12
Longitud = 15
Tercer rectangle:
Amplada = 13
Longitud = 16
Explicació pas a pas:
Donat que:
Primer rectangle:
Amplada = x
Longitud = x + 3
2n rectangle:
Augment de la dimensió d'1 cm respecte al primer rectangle;
Amplada = x + 1
Longitud = x + 4
3r rectangle:
Augment de la dimensió de 2 cm respecte al primer rectangle;
Amplada = x + 2
Longitud = x + 5
Suma dels tres perímetres del rectangle:
Perímetre d'un rectangle: 2 (l + O)
Primer rectangle:
2 (x + x + 3) = 2 (2x + 3) = 4x + 6
2n:
2 (x + 1 + x + 4) = 2 (2x + 5) = 4x + 10
3r:
2 (x + 2 + x + 5) = 2 (2x + 7) = 4x + 14
Suma de perímetres = 162
(4x + 6 + 4x + 10 + 4x + 14) = 162
12x + 30 = 162
12x = 162 - 30
12x = 130
x = 11
Per tant,
Primer rectangle:
Amplada = 11
Longitud = 11 + 3 = 14
2n rectangle:
Amplada = 11 + 1 = 12
Longitud = 11 + 4 = 15
3r rectangle:
Amplada = 11 + 2 = 13
Longitud = 11 + 5 = 16