<span>find the range. [15(35)]+[12(60)] and this will be your high end. now do it again but at the low end [15(20)]+[12(30)] and this will be your low end. now you have the max amount the price would be and the lowest amount of the price. now look at your answers and see what is within that range and what isn't and there's your answer.</span>
After plotting the quadrilateral in a Cartesian plane, you can see that it is not a particular quadrilateral. Hence, you need to divide it into two triangles. Let's take ABC and ADC.
The area of a triangle with vertices known is given by the matrix
M =
![\left[\begin{array}{ccc} x_{1}&y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20x_%7B1%7D%26y_%7B1%7D%261%5C%5Cx_%7B2%7D%26y_%7B2%7D%261%5C%5Cx_%7B3%7D%26y_%7B3%7D%261%5Cend%7Barray%7D%5Cright%5D%20)
Area = 1/2· | det(M) |
= 1/2· | x₁·y₂ - x₂·y₁ + x₂·y₃ - x₃·y₂ + x₃·y₁ - x₁·y₃ |
= 1/2· | x₁·(y₂ - y₃) + x₂·(y₃ - y₁) + x₃·(y₁ - y₂) |
Therefore, the area of ABC will be:
A(ABC) = 1/2· | (-5)·(-5 - (-6)) + (-4)·(-6 - 7) + (-1)·(7 - (-5)) |
= 1/2· | -5·(1) - 4·(-13) - 1·(12) |
= 1/2 | 35 |
= 35/2
Similarly, the area of ADC will be:
A(ABC) = 1/2· | (-5)·(5 - (-6)) + (4)·(-6 - 7) + (-1)·(7 - 5) |
= 1/2· | -5·(11) + 4·(-13) - 1·(2) |
= 1/2 | -109 |
<span> = 109/2</span>
The total area of the quadrilateral will be the sum of the areas of the two triangles:
A(ABCD) = A(ABC) + A(ADC)
= 35/2 + 109/2
= 72
12x+30+4
12x+34
This is 12x + 34 because when we combine all like terms, we get it.
Answer:

Step-by-step explanation:
(-2,1)=(x1,y1)
(4,5)=(x2,y2)
d=?
d=
Answer:
12
Step-by-step explanation:
3 times 12 is 36