Using technology,
normalcdf(lower = 59, upper = 65, mean = 60, sd = 5)
= 0.4206 or 42.06%
Answer:
16. (4 + h)( 11 + h)
17. (2 - x)(20 - x)
18. (2 + x)(- 12 + x)
19. (6 + m)(- 7 + m)
20. x =4 and 3
21. x = 9 and -3
Step-by-step explanation:
16. 44 + 15h + h² = 44 + 11h + 4h + h² = (4 + h)( 11 + h) (Answer)
17. 40 - 22x + x² = 40 - 20x - 2x + x² = (2 - x)(20 - x) (Answer)
18. - 24 - 10x + x² = - 24 - 12x + 2x + x² = (2 + x)( - 12 + x) (Answer)
19. - 42 - m + m² = - 42 - 7m + 6m + m² = (6 + m)(- 7 + m) (Answer)
20. x² - 7x + 12 = 0
⇒ x² - 4x - 3x + 12 = 0
⇒ (x - 4)( x - 3) = 0
⇒ x =4 and 3 (Answer)
21. x² - 6x = 27
⇒ x² - 6x -27 = 0
⇒ x² - 9x + 3x - 27 = 0
⇒ (x - 9)( x + 3) = 0
⇒ x = 9 and -3 (Answer)
Answer:
I hope you understood! Good luck with the rest of your class :)
Answer:
The answer to your question is
Step-by-step explanation:
Data
Foci (-2, 2) (4, 2)
Major axis = 10
Process
1.- Plot the foci to determine if the ellipse is vertical or horizontal. See the picture below.
From the graph we conclude that it is a horizontal ellipse.
2.- Determine the foci axis (distance between the foci)
2c = 6
c = 6/2
c = 3
3.- Determine a
2a = 10
a = 10/2
a = 5
4.- Determine b using the Pythagorean theorem
a² = b² + c²
-Solve for b
b² = a² - c²
b² = 5² - 3²
b² = 25 - 9
b² = 16
b = 4
5.- Find the center (1, 2) From the graph, it is in the middle of the foci
6.- Find the equation of the ellipse

add the two equations together
5a+5b=25
-5a+5b=35
------------------
0 + 10b =60
divide by 10
b=6
5a + 5b = 25
5a +5(6) = 25
5a +30 =25
subtract 30 from each side
5a =-5
divide by 5
a = -1
Answer (-1,6)
or a=-1 b=6