The variables are: time(the independent variable or (x) variable) and number of handbags (the dependent variable or (y) variable). The variables helps to plot an accurate points on the graph.
Answer:
110 grams
Step-by-step explanation:
CO2 molecule is made up of Carbon (atomic mass =12) and oxygen (atomic mass=16).
So first finding the mass of 1 molecule of CO2 which is equals to
= mass of 1 carbon atom + masses of 2 oxygen atom, we get
= 12+(16*2)= 12+32= 44 a.m.u.
Now 1 molecule of CO2 has mass 44 amu so mass of 1 mole CO2 will be 44 grams.( 1 a.m.u.=1.6729*10^-33 grams. 1 mole = 6.022*10^23, so 44 a.m.u.=73.6076*10^-33 grams approx. For one mole CO2, 73.6076*10^-33*6.022*10^23 which is approximately equals to 44 grams. )
1 mole CO2= 44grams, so 2.5 moles = 44*2.5= 110 grams
So our answer is 110 grams.
lowkey hope this helped you, good luck whatever you need it for Imaooo
Take the homogeneous part and find the roots to the characteristic equation:

This means the characteristic solution is

.
Since the characteristic solution already contains both functions on the RHS of the ODE, you could try finding a solution via the method of undetermined coefficients of the form

. Finding the second derivative involves quite a few applications of the product rule, so I'll resort to a different method via variation of parameters.
With

and

, you're looking for a particular solution of the form

. The functions

satisfy


where

is the Wronskian determinant of the two characteristic solutions.

So you have




So you end up with a solution

but since

is already accounted for in the characteristic solution, the particular solution is then

so that the general solution is