1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
3 years ago
10

Find the value of x. 5x° 130° ASAP

Mathematics
1 answer:
Andrej [43]3 years ago
5 0

Answer:

5(x+26)

Step-by-step explanation:

You might be interested in
Consider the system of equations.
Liula [17]

Answer:

Step-by-step explanation:

3 0
3 years ago
The surface area of a right cone is 400.2 m2. The radius of the cone is 6.0 m. Determine the height of the cone to the nearest m
svetoff [14.1K]
                 S = πr(r + √(h² + r²))
          400.2 = 3.14(6)(6 + √(h² + 6²))
          400.2 = 18.84(6 + √(h² + 36))
          18.84                 18.84
        21¹⁰⁹/₄₇₁ = 6 + √(h² + 36))
        - 6         - 6
        15¹⁰⁹/₄₇₁ = √(h² + 36)
231²²¹⁰⁰⁵/₂₂₁₈₄₁ = h² + 36
- 36                       - 36
195²²¹⁰⁰⁵/₂₂₁₈₄₁ = h²
                14 ≈ h
8 0
3 years ago
In a certain state, license plates each consist of 2 letters followed by either 3 or 4 digits. How many differen license plates
coldgirl [10]

Answer:

26 × 26 × 10 × 10 × 10 = 676 , 000  possibilities

Step-by-step explanation:

There is nothing stating that the letters and numbers can't be repeated, so all  26  letters of the alphabet and all  10

digits can be used again.

If the first is A, we have  26  possibilities:

AA, AB, AC,AD,AE ...................................... AW, AX, AY, AZ.

If the first is B, we have  26  possibilities:

BA, BB, BC, BD, BE .........................................BW, BX,BY,BZ

And so on for every letter of the alphabet.  There are  26  choices for the  first letter and  26  choices for the second letter. The number of different combinations of  2  letters is: 26 × 26 = 676

The same applies for the three digits. There are  10  choices for the first,  10

for the second and  10  for the third:

10 × 10 × 10 = 1000  

So for a license plate which has  2  letters and  3  digits, there are:  26 × 26 ×  10 × 10 × 10 = 676 , 000  possibilities.

Hope this helps.

8 0
3 years ago
A coin is tossed 50 times. It lands on heads 30 times. Based on this outcome, how many times is the coin expected to land on hea
BaLLatris [955]

Answer:

D: 120

Step-by-step explanation:

30/50 = 120/200

3 0
3 years ago
Read 2 more answers
Y″+ 5y′ + 6y = 3δ(t − 2) − 4δ(t −5); y(0) = y′′(0) = 0
Snowcat [4.5K]

Answer:

y(t) =  3u₂(t) [ e^{-2t+4}  - e^{-5t + 10)} ] - 4u₅(t) [ e^{-2t+10)}  - e^{-5t + 25)} ]

Step-by-step explanation:

To find - y″+ 5y′ + 6y = 3δ(t − 2) − 4δ(t −5); y(0) = y′(0) = 0

Formula used -

L{δ(t − c)} = e^{-cs}

L{f''(t) = s²F(s) - sf(0) - f'(0)

L{f'(t) = sF(s) - f(0)

Solution -

By Applying Laplace transform, we get

L{y″+ 5y′ + 6y} = L{3δ(t − 2) − 4δ(t −5)}

⇒L{y''} + 5L{y'} + 6L{y} = 3L{δ(t − 2)}  − 4L{δ(t −5)}

⇒s²Y(s) - sy(0) - y'(0) + 5[sY(s) - y(0)] + 6Y(s) = 3e^{-2s} - 4e^{-5s}

⇒s²Y(s) - 0 - 0 + 5[sY(s) - 0] + 6Y(s) = 3e^{-2s} - 4e^{-5s}

⇒s²Y(s) + 5sY(s) + 6Y(s) = 3e^{-2s} - 4e^{-5s}

⇒[s² + 5s + 6] Y(s) = 3e^{-2s} - 4e^{-5s}

⇒[s² + 3s + 2s + 6] Y(s) = 3e^{-2s} - 4e^{-5s}

⇒[s(s + 3) + 2(s + 3)] Y(s) = 3e^{-2s} - 4e^{-5s}

⇒[(s + 2)(s + 3)] Y(s) = 3e^{-2s} - 4e^{-5s}

⇒Y(s) = \frac{3e^{-2s} }{(s + 2)(s + 3)} -  \frac{4e^{-5s} }{(s + 2)(s + 3)}

Now,

Let

\frac{1}{(s+2)(s+3)} = \frac{A}{s+2}  + \frac{B}{s+3} \\\frac{1}{(s+2)(s+3)} = \frac{A(s + 3) + B(s+2)}{(s+2)(s+3)}\\1 = As + 3A + Bs + 2B\\1 = (A+B)s + (3A + 2B)

By Comparing, we get

A + B = 0 and 3A + 2B = 1

⇒A = -B

and

3(-B) + 2B = 1

⇒-B = 1

⇒B = -1

So,

A = 1

∴ we get

\frac{1}{(s+2)(s+3)} = \frac{1}{s+2}  + \frac{-1}{s+3}

So,

Y(s) = 3e^{-2s}[ \frac{1}{(s + 2)} -    \frac{1}{(s + 3)}] - 4e^{-5s}[ \frac{1}{(s + 2)} -    \frac{1}{(s + 3)}]

⇒Y(s) = 3e^{-2s} \frac{1}{(s + 2)} -    3e^{-2s} \frac{1}{(s + 3)} - 4e^{-5s}\frac{1}{(s + 2)} + 4e^{-5s}\frac{1}{(s + 3)}

By applying inverse Laplace , we get

y(t) = 3u₂(t) [ e^{-2(t-2)}  - e^{-5(t - 2)} ] - 4u₅(t) [ e^{-2(t-5)}  - e^{-5(t - 5)} ]

⇒y(t) =  3u₂(t) [ e^{-2t+4}  - e^{-5t + 10)} ] - 4u₅(t) [ e^{-2t+10)}  - e^{-5t + 25)} ]

It is the required solution.

3 0
3 years ago
Other questions:
  • Mr. Carter has 54 square tiles how should he arrange them so that he has the smallest perimeter? 9 x 6 rectangle 26 x 2 rectangl
    12·2 answers
  • 9 ten thousands divided by ten
    6·2 answers
  • If 3✖️/4 =7 ➖x/3,then x=
    12·1 answer
  • Callie made a postcard that is 5 inches tall and 7 inches wide. A company wants to make a poster based on the postcard. The post
    15·1 answer
  • How many extraneous solutions does the equation below have?
    15·2 answers
  • A cement mixer can hold up to 681 kilograms of cement. How many 100-pound bags of cement can be put into the mixer at one time?​
    6·1 answer
  • Suppose that we have a sample space S = {E1, E2, E3, E4, E5}, where E1, E2, E3, E4, E5 denote the sample points. The following p
    7·1 answer
  • Let |u| = 4 at an angle of 210° and |v| = 9 at an angle of 315°, and w = u – v. What is the magnitude and direction angle of w?
    9·2 answers
  • Will give brainliest Pleaseeee HELP asap no guessing please
    11·1 answer
  • The table represents a proportional relationship. Write an equation to represent the relationship.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!