Answer:
Let
and
bases of V. The matrix of change from A to B is the matrix n×n whose columns are vectors columns of the coordinates of vectors
at base A.
The, we case correspond to find the coordinates of vectors of C,
![\{\left[\begin{array}{ccc}2\\-1\\-1\end{array}\right], \left[\begin{array}{ccc}2\\0\\-1\end{array}\right], \left[\begin{array}{ccc}-3\\1\\2\end{array}\right] \}](https://tex.z-dn.net/?f=%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C-1%5C%5C-1%5Cend%7Barray%7D%5Cright%5D%2C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C-1%5Cend%7Barray%7D%5Cright%5D%2C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C1%5C%5C2%5Cend%7Barray%7D%5Cright%5D%20%20%20%5C%7D)
at base B.
1. We need to find
such that
![\left[\begin{array}{ccc}2\\-1\\-1\end{array}\right]=a\left[\begin{array}{ccc}1\\-1\\0\end{array}\right]+b\left[\begin{array}{ccc}-2\\2\\-1\end{array}\right]+c\left[\begin{array}{ccc}2\\-1\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C-1%5C%5C-1%5Cend%7Barray%7D%5Cright%5D%3Da%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C-1%5C%5C0%5Cend%7Barray%7D%5Cright%5D%2Bb%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%5C%5C2%5C%5C-1%5Cend%7Barray%7D%5Cright%5D%2Bc%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C-1%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
Then we find these values solving the linear system
![\left[\begin{array}{cccc}1&-2&2&2\\-1&2&-1&-1\\0&-1&1&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%262%262%5C%5C-1%262%26-1%26-1%5C%5C0%26-1%261%26-1%5Cend%7Barray%7D%5Cright%5D)
Using rows operation we obtain the echelon form of the matrix
![\left[\begin{array}{cccc}1&-2&2&2\\0&-1&1&-1\\0&0&1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%262%262%5C%5C0%26-1%261%26-1%5C%5C0%260%261%261%5Cend%7Barray%7D%5Cright%5D)
now we use backward substitution

Then the coordinate vector of
is ![\left[\begin{array}{ccc}4\\2\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C2%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
2. We need to find
such that
![\left[\begin{array}{ccc}2\\0\\-1\end{array}\right]=a\left[\begin{array}{ccc}1\\-1\\0\end{array}\right]+b\left[\begin{array}{ccc}-2\\2\\-1\end{array}\right]+c\left[\begin{array}{ccc}2\\-1\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C0%5C%5C-1%5Cend%7Barray%7D%5Cright%5D%3Da%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C-1%5C%5C0%5Cend%7Barray%7D%5Cright%5D%2Bb%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%5C%5C2%5C%5C-1%5Cend%7Barray%7D%5Cright%5D%2Bc%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C-1%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
Then we find these values solving the linear system
![\left[\begin{array}{cccc}1&-2&2&2\\-1&2&-1&0\\0&-1&1&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%262%262%5C%5C-1%262%26-1%260%5C%5C0%26-1%261%26-1%5Cend%7Barray%7D%5Cright%5D)
Using rows operation we obtain the echelon form of the matrix
![\left[\begin{array}{cccc}1&-2&2&2\\0&-1&1&-1\\0&0&1&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%262%262%5C%5C0%26-1%261%26-1%5C%5C0%260%261%262%5Cend%7Barray%7D%5Cright%5D)
now we use backward substitution
Then the coordinate vector of
is ![\left[\begin{array}{ccc}4\\3\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C3%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
3. We need to find
such that
![\left[\begin{array}{ccc}-3\\1\\2\end{array}\right]=a\left[\begin{array}{ccc}1\\-1\\0\end{array}\right]+b\left[\begin{array}{ccc}-2\\2\\-1\end{array}\right]+c\left[\begin{array}{ccc}2\\-1\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C1%5C%5C2%5Cend%7Barray%7D%5Cright%5D%3Da%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C-1%5C%5C0%5Cend%7Barray%7D%5Cright%5D%2Bb%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%5C%5C2%5C%5C-1%5Cend%7Barray%7D%5Cright%5D%2Bc%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C-1%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
Then we find these values solving the linear system
![\left[\begin{array}{cccc}1&-2&2&-3\\-1&2&-1&1\\0&-1&1&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%262%26-3%5C%5C-1%262%26-1%261%5C%5C0%26-1%261%262%5Cend%7Barray%7D%5Cright%5D)
Using rows operation we obtain the echelon form of the matrix
![\left[\begin{array}{cccc}1&-2&2&-3\\0&-1&1&2\\0&0&1&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%262%26-3%5C%5C0%26-1%261%262%5C%5C0%260%261%26-2%5Cend%7Barray%7D%5Cright%5D)
now we use backward substitution
Then the coordinate vector of
is ![\left[\begin{array}{ccc}-2\\-4\\-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%5C%5C-4%5C%5C-2%5Cend%7Barray%7D%5Cright%5D)
Then the change of basis matrix from B to C is
![\left[\begin{array}{ccc}4&4&-2\\2&3&-4\\1&2&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%264%26-2%5C%5C2%263%26-4%5C%5C1%262%26-2%5Cend%7Barray%7D%5Cright%5D)