Answer:
The position vector of point C is <-3 , -17 , 8> or -3i - 17j + 8k
Step-by-step explanation:
* Lets revise how to solve the problem
- If the endpoints of a segment are (x1 , y1 , z1) and (x2 , y2 , z2), and
point (x , y , z) divides the segment externally at ratio m1 :m2, then
![x=\frac{m_{1}x_{2}-m_{2}x_{1}}{m_{1} -m_{2}},y=\frac{m_{1}y_{2}-m_{2}y_{1}}{m_{1}-m_{2}},z=\frac{m_{1}z_{2}-m_{2}z_{1}}{m_{1}-m_{2}}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bm_%7B1%7Dx_%7B2%7D-m_%7B2%7Dx_%7B1%7D%7D%7Bm_%7B1%7D%20-m_%7B2%7D%7D%2Cy%3D%5Cfrac%7Bm_%7B1%7Dy_%7B2%7D-m_%7B2%7Dy_%7B1%7D%7D%7Bm_%7B1%7D-m_%7B2%7D%7D%2Cz%3D%5Cfrac%7Bm_%7B1%7Dz_%7B2%7D-m_%7B2%7Dz_%7B1%7D%7D%7Bm_%7B1%7D-m_%7B2%7D%7D)
* Lets solve the problem
∵ AB is a segment where A = (3 , 1 , 2) and B = (1 , - 5 , 4)
∵ Point C lies on line AB such that AC : BC=3 : 2
∵ From the ratio AC = 3/2 AB
∴ C divides AB externally
- Lets use the rule above to find the coordinates of C
- Let Point A is (x1 , y1 , z1) , point B is (x2 , y2 , z2) and point C is (x , y , z)
and AC : AB is m1 : m2
∴ x1 = 3 , x2 = 1
∴ y1 = 1 , y2 = -5
∴ z1 = 2 , z2 = 4
∴ m1 = 3 , m2 = 2
- By using the rule above
∴ ![x=\frac{3(1)-2(3)}{3-2}=\frac{3-6}{1}=\frac{-3}{1}=-3](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B3%281%29-2%283%29%7D%7B3-2%7D%3D%5Cfrac%7B3-6%7D%7B1%7D%3D%5Cfrac%7B-3%7D%7B1%7D%3D-3)
∴ ![y=\frac{3(-5)-2(1)}{3-2}=\frac{x=-15-2}{1}=\frac{-17}{1}=-17](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B3%28-5%29-2%281%29%7D%7B3-2%7D%3D%5Cfrac%7Bx%3D-15-2%7D%7B1%7D%3D%5Cfrac%7B-17%7D%7B1%7D%3D-17)
∴ ![z=\frac{3(4)-2(2)}{3-2}=\frac{12-4}{1}=\frac{8}{1}=8](https://tex.z-dn.net/?f=z%3D%5Cfrac%7B3%284%29-2%282%29%7D%7B3-2%7D%3D%5Cfrac%7B12-4%7D%7B1%7D%3D%5Cfrac%7B8%7D%7B1%7D%3D8)
∴ The coordinates fo point c are (-3 , -17 , 8)
* The position vector of point C is <-3 , -17 , 8> or -3i - 17j + 8k