Given:
Initial number of bacteria = 3000
With a growth constant (k) of 2.8 per hour.
To find:
The number of hours it will take to be 15,000 bacteria.
Solution:
Let P(t) be the number of bacteria after t number of hours.
The exponential growth model (continuously) is:

Where,
is the initial value, k is the growth constant and t is the number of years.
Putting
in the above formula, we get



Taking ln on both sides, we get

![[\because \ln e^x=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Cln%20e%5Ex%3Dx%5D)



Therefore, the number of bacteria will be 15,000 after 0.575 hours.
Answer:
It’s 14
Step-by-step explanation:
Just add
Area for circle is πr² so πr² =28.26 and we can sub 3.14 as pi
3.14*r²=28.26 we can divide by 3.14 to get r² on it's own
r²=28.26/3.14
then we root both sides to get r on it's own
28.26/3.14=9 √9=3
and the diameter is double the radius 3*2=6 so the diameter is 6
The interquartile range (IQR) can be found by finding the difference of the upper and lower quartiles
The area of the triangular kite would be 12 feet