UY = 25
<em><u>hope </u></em><em><u>this </u></em><em><u>answer </u></em><em><u>helps </u></em><em><u>you </u></em><em><u>dear.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care!</u></em>
<em><u>if </u></em><em><u>u </u></em><em><u>have </u></em><em><u>any </u></em><em><u>doubt </u></em><em><u>so </u></em><em><u>feel </u></em><em><u>free </u></em><em><u>to </u></em><em><u>ask!</u></em>
Answer:
20 i think
Step-by-step explanation:
Answer:
10
Step-by-step explanation:
In any polygon
exterior angle + interior angle = 180° , thus
exterior angle + 144 = 180 ( subtract 144 from both sides )
exterior angle = 36°
The sum of the exterior angles = 360°
Thus number of sides n is calculated as
n = 360 ÷ 36 = 10
It looks like the ODE is

with the initial condition of
.
Rewrite the right side in terms of the unit step function,

In this case, we have

The Laplace transform of the step function is easy to compute:

So, taking the Laplace transform of both sides of the ODE, we get

Solve for
:

We can split the first term into partial fractions:

If
, then
.
If
, then
.


Take the inverse transform of both sides, recalling that

where
is the Laplace transform of the function
. We have


We then end up with
