1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavel [41]
3 years ago
10

6.5 B Level

Mathematics
1 answer:
faltersainse [42]3 years ago
8 0

Answer:

Between 13 meters & 21 meters

Step-by-step explanation:

Sum of two sides of a triangle must be greater than the third side and difference of two sides must be less than the third side.

Sum of two sides =17+4=21 meters

Difference of two sides =17-4=13 metres

Therefore,

13 third side

Option: Between 13 meters & 21 meters is correct.

You might be interested in
Solve pls <br> 2x - 5 = 7
storchak [24]

Answer:

<h2>x = 6</h2>

Step-by-step explanation:

2x - 5 = 7 \\ 2x = 12 \\ x = 6

4 0
3 years ago
Read 2 more answers
Which value is greater than - 5/25 ?<br><br> A. - 0.02<br> B - 0.25<br> C. - 0.2<br> D. - 0.268
Kay [80]

Answer:

a

Step-by-step explanation:

7 0
4 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
A line has a slope of 1and passes through the point
Jobisdone [24]

\huge\boxed{y=x-3}

Start with point-slope form, where m is the slope and (x_1, y_1) is a known point on the line.

y-y_1=m(x-x_1)

Substitute in the known values.

y-3=1(x-6)

Distribute the 1 to the (x-6).

y-3=x-6

Add 3 to both sides.

\boxed{y=x-3}

7 0
4 years ago
Read 2 more answers
The sum of two consecutive integers is no more than 209. What is the larger of the two integers?
Cloud [144]

Answer:

105 is your answer

Step-by-step explanation:

Let the two consecutive integers be: x , x + 1

Set the equation

x + x + 1 = 209

Simplify. Combine like terms.

(x + x) + 1 = 209

2x + 1 = 209

Isolate the x. Note the equal sign, what you do to one side, you do to the other.

Subtract 1 from both sides

2x + 1 (-1) = 209 (-1)

2x = 209 - 1

2x = 208

Isolate the x. Divide 2 from both sides

(2x)/2 = (208)/2

x = 208/2

x = 104

------------------------------------------------------------------------------------------------------

Plug in 104 for x.

(x + 1) = (104) + 1 = 105

105 is your answer

~

4 0
3 years ago
Other questions:
  • What is the measure of D?
    9·2 answers
  • What is 56,291.8 rounded to the nearest thousand
    14·2 answers
  • If you multiply the slopes of two perpendicular lines, the product is -1.
    14·1 answer
  • A number line going from negative 1 to positive 1 in increments of 1. There are 4 equal spaces between each number. The line con
    9·1 answer
  • Help me with my math **50 pts** I mark brainliest**
    12·1 answer
  • I really need the help
    7·1 answer
  • Jose bought 1.5 pound of apples for $3.60. how much would 3/4 of a pound apples cost?
    13·1 answer
  • Please can someone help me thank you
    14·1 answer
  • If h(x) = 3 – x, find:<br> c. h(x + 1)<br> d. h(5 - x)
    6·1 answer
  • Find the volume of the prism.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!