Lmk if this helped if not im sorry
Answer:
is proved for the sum of pth, qth and rth terms of an arithmetic progression are a, b,and c respectively.
Step-by-step explanation:
Given that the sum of pth, qth and rth terms of an arithmetic progression are a, b and c respectively.
First term of given arithmetic progression is A
and common difference is D
ie.,
and common difference=D
The nth term can be written as

pth term of given arithmetic progression is a

qth term of given arithmetic progression is b
and
rth term of given arithmetic progression is c

We have to prove that

Now to prove LHS=RHS
Now take LHS




![=\frac{[Aq+pqD-Dq-Ar-prD+rD]\times qr+[Ar+rqD-Dr-Ap-pqD+pD]\times pr+[Ap+prD-Dp-Aq-qrD+qD]\times pq}{pqr}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%5BAq%2BpqD-Dq-Ar-prD%2BrD%5D%5Ctimes%20qr%2B%5BAr%2BrqD-Dr-Ap-pqD%2BpD%5D%5Ctimes%20pr%2B%5BAp%2BprD-Dp-Aq-qrD%2BqD%5D%5Ctimes%20pq%7D%7Bpqr%7D)




ie., 
Therefore
ie.,
Hence proved
You have one of the answers correct. The fraction 4/8 is equal to 1/2
Other answers are: 5/10, 10/20, and 6/12
If you reduced each of those fractions, you'd get to 1/2.
You can use a calculator to find that
4/8 = 0.5
1/2 = 0.5
5/10 = 0.5
10/20 = 0.5
6/12 = 0.5
All fractions mentioned lead to the same decimal value, so this confirms all of the fractions are equivalent to one another.
Answer: h(x) = 3*x^2 - 7*x + 8
Step-by-step explanation:
The rate of change of a function is equal to the derivate:
remember that a derivate of the form:
k(x) = a*x^n is k'(x) = n*a*x^(n-1)
Then we have:
f(x) = 2*x - 10
f'(x) = 1*2* = 2
g(x) = 16*x - 4
g'(x) = 1*16 = 16
h(x) = 3*x^2 - 7*x + 8
h'(x) = 2*3*x - 1*7 = 6*x - 7
So the only that increases as x increases is h(x), this means that the greates rate of change as x approaches inffinity is the rate of change of h(x)