The following statements are considered to be propositions:
- There are more men than women at BYU-Idaho.
<h3>What is deductive reasoning?</h3>
Deductive reasoning can be defined as a type of logical reasoning that typically involves drawing conclusions based on a given set of rules and conditions or from one or more premises (factual statements) that are assumed to be generally (universally) true.
<h3>What is a proposition?</h3>
A proposition can be defined as a type of statement (assertion) that is typically used to express an opinion or a judgement, with either a true or false answer.
This ultimately implies that, a proposition refers to a type of statement (assertion) that is either a true or false.
In this context, we can infer and logically deduce that the following statements are considered to be propositions:
- There are more men than women at BYU-Idaho.
Read more on propositions here: brainly.com/question/24158168
#SPJ1
<span>72÷p=8
</span>p = 72÷ 8
p = 9
hope it helps
we know that
For a polynomial, if
x=a is a zero of the function, then
(x−a) is a factor of the function. The term multiplicity, refers to the number of times that its associated factor appears in the polynomial.
So
In this problem
If the cubic polynomial function has zeroes at 2, 3, and 5
then
the factors are

Part a) Can any of the roots have multiplicity?
The answer is No
If a cubic polynomial function has three different zeroes
then
the multiplicity of each factor is one
For instance, the cubic polynomial function has the zeroes

each occurring once.
Part b) How can you find a function that has these roots?
To find the cubic polynomial function multiply the factors and equate to zero
so

therefore
the answer Part b) is
the cubic polynomial function is equal to
