Answer:
Mr. Dairo can produce 20580 pieces of Papaya rosette in two weeks.
Step-by-step explanation:
Papaya rosette pieces on first day = 5890
Papaya rosette Pieces on second day = 7020
Papaya rosette Pieces of third day = 8150
Let

We can check if these numbers are part of a sequence.
In order to check, common difference will be found first.

It can be observed that the common difference is same. When the common difference is same, the sequence is said to be an arithmetic sequence.
The formula for arithmetic sequence is given by:

Putting the values

The formula for nth term can be used to find any term. As we have to find the number of papaya rosette pieces after two weeks which means that we need to find the number of pieces on 14th day.
So,

Hence,
Mr. Dairo can produce 20580 pieces of Papaya rosette in two weeks.
Answer:
divide it then you'll get your answer!
Step-by-step explanation:
Its D becuase of math thing :) its D
Answer:
M = 5742π
Step-by-step explanation:
Given:-
- Find the mass of a solid with the density ( ρ ):
ρ ( r, θ , z ) = 1 + z / 81
- The solid is bounded by the planes:
0 ≤ z ≤ 81 - r^2
0 ≤ r ≤ 9
Find:-
Find the mass of the solid paraboloid
Solution:-
- The mass (M) of any solid body is given by the following triple integral formulation:

- We can write the above expression in cylindrical coordinates:
![M = \int\limits\int\limits_r\int\limits_z {r*p(r,theta,z)} \, dz.dr.dtheta \\\\M = \int\limits\int\limits_r\int\limits_z {r*[ 1 + \frac{z}{81}] } \, dz.dr.dtheta\\\\](https://tex.z-dn.net/?f=M%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%5Cint%5Climits_z%20%7Br%2Ap%28r%2Ctheta%2Cz%29%7D%20%5C%2C%20dz.dr.dtheta%20%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%5Cint%5Climits_z%20%7Br%2A%5B%201%20%2B%20%5Cfrac%7Bz%7D%7B81%7D%5D%20%7D%20%5C%2C%20dz.dr.dtheta%5C%5C%5C%5C)
- Perform integration:
![M = \int\limits\int\limits_r{r*[ z + \frac{z^2}{162}] } \,|_0^8^1^-^r^2 dr.dtheta\\\\M = \int\limits\int\limits_r{r*[ 81-r^2 + \frac{(81-r^2)^2}{162}] } \, dr.dtheta\\\\M = \int\limits\int\limits_r{r*[ 81-r^2 + \frac{6561 -162r + r^2}{162}] } \, dr.dtheta\\\\M = \int\limits\int\limits_r{r*[ 81-r^2 + 40.5 -r +\frac{r^2}{162} ] } \, dr.dtheta\\\\M = \int\limits\int\limits_r{[ 121.5r-r^2 -\frac{161r^3}{162} ] } \, dr.dtheta\\\\](https://tex.z-dn.net/?f=M%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%20z%20%2B%20%5Cfrac%7Bz%5E2%7D%7B162%7D%5D%20%7D%20%5C%2C%7C_0%5E8%5E1%5E-%5Er%5E2%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%2081-r%5E2%20%2B%20%5Cfrac%7B%2881-r%5E2%29%5E2%7D%7B162%7D%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%2081-r%5E2%20%2B%20%5Cfrac%7B6561%20-162r%20%2B%20r%5E2%7D%7B162%7D%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%2081-r%5E2%20%2B%2040.5%20-r%20%2B%5Cfrac%7Br%5E2%7D%7B162%7D%20%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7B%5B%20121.5r-r%5E2%20-%5Cfrac%7B161r%5E3%7D%7B162%7D%20%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5C)
- The mass evaluated is M = 5742π
Easiest method you can apply (Cramer's one). <em>"</em><em>Thanks</em><em> </em><em>me</em><em>"</em><em> </em>if i've been helpful