P=2L+2W
L=3+w
24=2x(3+w)+2w
24=6+2w+2w
24=6+4w
24-6=4w
18=4w
4 and 1/2 = 2
A right triangle can also be an isosceles triangle.
Answer:
CE = 17
Step-by-step explanation:
∵ m∠D = 90
∵ DK ⊥ CE
∴ m∠KDE = m∠KCD⇒Complement angles to angle CDK
In the two Δ KDE and KCD:
∵ m∠KDE = m∠KCD
∵ m∠DKE = m∠CKD
∵ DK is a common side
∴ Δ KDE is similar to ΔKCD
∴ 
∵ DE : CD = 5 : 3
∴ 
∴ KD = 5/3 KC
∵ KE = KC + 8
∵ 
∴ 
∴ 
∴ 
∴ 
∴ KC = (8 × 9) ÷ 16 = 4.5
∴ KE = 8 + 4.5 = 12.5
∴ CE = 12.5 + 4.5 = 17
you need to plug your g(x) into the function f(x)
f(g(x))= 9(-x+3)-2, then you just distribute the 9 to set in the parentheses
f(g(x))= -9x+27-2, then finally you combine your like terms to get
f(g(x))= -9x+25