The given data is
t, h: 0 2 4 6 8 10
r(t), L/h: 8.6 7.9 6.8 6.4 5.7 5.3
The lower and upper estimates for the total amount that leaked may be computed as the Left and Right Riemann sums.
The shape of the graph of r versus will determine which of the two sums yields an upper or lower sum.
The plot of the graph is shown below.
The Left Riemann sum is
Sl = 2*(8.6+7.9+6.8+6.4+5.7) = 70.8 L
The Right Riemann sum is
Sr = 2*(7.9+6.8+6.4+5.7+5.3) = 64.2 L
Answer:
The lower estimate for oil leakage is 64.2 L
The upper estimate for oil leakage is 70.8 L
If the height was 10, then the volume of the cube would be 1000 because you find volume you must multiply the length*width*height and the value of those three is 10.
Now since volume is 1000 and the volume of a 2in cube is 8 (again, lwh=V) you can divide 1000 by 8 and you would get 125. So that means 125 2in cubes can fit inside the bigger cube.
If the volume of this cube were 750in^3 and you had to find the height, you would use the Volume formula again:
l*w*h=V
10*10*h=750
20h=750
((divide both sides of the equation by 20 to find the value of h))
h=37.5
If the surface area of the cube were 680in^2 then you would use the surface area formula to find the value of h:
(2(lw))+(2(lh))+(2(wh))=A
(2(10*10))+(2(10h))+(2(10h))=680
200+20h+20h=680
subtract 200 from both sides of the equation:
40h=480
divide both sides by 40 to get the value of h:
h=12