Answer:
Numerator = 2(b^2+a^2)    or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
Step-by-step explanation:
Let
S = 2b/(b+a)^2 + 2a/(b^2-a^2)   factor denominator
= 2b/(b+a)^2 + 2a/((b+a)(b-a))     factor denominators
= 1/(b+a) ( 2b/(b+a) + 2a/(b-a))    find common denominator
= 1/(b+a) ((2b*(b-a) + 2a*(b+a))/((b+a)(b-a))   expand
= 1/(b+a)(2b^2-2ab+2ab+2a^2)/((b+a)(b-a))  simplify & factor
= 2/(b+a)(b^2+a^2)/((b+a)(b-a))  simplify & rearrange
= 2(b^2+a^2)/((b+a)^2(b-a))
Numerator = 2(b^2+a^2)    or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
 
        
             
        
        
        
Part one of answering how to factor
 
        
             
        
        
        
Answer:
Hope this helps! 
Step-by-step explanation:
 
        
                    
             
        
        
        
Answer:
No
Step-by-step explanation:
They are not being added by the same number each time.
 
        
                    
             
        
        
        
It is a prime number. 89=1×89 hope it helps