1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_lady [41]
3 years ago
15

Solve by substitutionx+3y=5 -2x-4=-5 ​

Mathematics
1 answer:
likoan [24]3 years ago
3 0

Answer:

x = 1/2 , y = 3/2

Step-by-step explanation:

Solve the following system:

{3 y + x = 5

-2 x - 4 = -5

Hint: | Choose an equation and a variable to solve for.

In the second equation, look to solve for x:

{3 y + x = 5

-2 x - 4 = -5

Hint: | Isolate terms with x to the left hand side.

Add 4 to both sides:

{3 y + x = 5

-2 x = -1

Hint: | Solve for x.

Divide both sides by -2:

{3 y + x = 5

x = 1/2

Hint: | Perform a substitution.

Substitute x = 1/2 into the first equation:

{3 y + 1/2 = 5

x = 1/2

Hint: | Choose an equation and a variable to solve for.

In the first equation, look to solve for y:

{3 y + 1/2 = 5

x = 1/2

Hint: | Isolate terms with y to the left hand side.

Subtract 1/2 from both sides:

{3 y = 9/2

x = 1/2

Hint: | Solve for y.

Divide both sides by 3:

{y = 3/2

x = 1/2

Hint: | Sort results.

Collect results in alphabetical order:

Answer:{x = 1/2 , y = 3/2

You might be interested in
What is the value of x when h(x) = −3?
CaHeK987 [17]

Answer:

○ -1

Step-by-step explanation:

Looking closely at this piecewise function, when the line on the left-hand side intersects at -3 = y, x is -1.

i hope this work for you

8 0
2 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
2 years ago
Read 2 more answers
Can someone help me with this
n200080 [17]

Answer:

Step-by-step explanation:

for dot plot A, the mean is 90 to the medium becuase it has the most dots out of them all.

8 0
2 years ago
Will it fit in a pot with a height of 20 cm and a bottom radius of 10 cm of 2.5 liters?
mylen [45]

Answer:

Step-by-step explanation:

Volume of pot = πr²h

                       = 3.14 * 10 * 10 * 20

                       = 6280 cubic cm

1000 cubic cm = 1 litre

6280 cubic cm = 6.28 litre

∵ 2.5 litres will fit in the pot as the capacity of pot is 6.28 litre

8 0
3 years ago
Can someone pls help me with these equations
Zielflug [23.3K]

Answer:

1. y = -2x+5

2. y = 3/4 - 3

3. intercept = -5 slope =  4/3

4. intercept = 1 slope = -1/2

5 0
3 years ago
Other questions:
  • How to to determine if two polygons have the same side and shape
    8·1 answer
  • In the figure, PMQ, PNR, MOR and NOQ are straight lines. It is given that  △PQN ≅ △PRM. Find x and y.​
    12·1 answer
  • 7/8 (< > =)5/9
    10·1 answer
  • In circle O, what is the measure of angle MAJ
    7·2 answers
  • 3/4 w = 75<br> W=<br> what does w equal ?
    9·1 answer
  • A markdown that is greater than 99% but less than 100%?
    6·2 answers
  • A baker sells bread for $6 and rolls for $2 each. The baker needs to sell $36 worth of baked goods by the end of the day. How ma
    15·1 answer
  • Find the prime factorization of 196. Use a method of your choice. List your final answer
    9·1 answer
  • If you have $10.25 in quarters, how many quarters do you have?
    8·2 answers
  • - x - 4y = 16 Solve for the x and y intercept.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!