Answer:
<u>0</u><u>.</u><u>4</u><u>2</u>
Process:
1 - 0.58
<u>0</u><u>.</u><u>4</u><u>2</u>
Answer:
yes
Step-by-step explanation:
You would use the equation 3m+.05 to find the total cost.
Hope this helps!!
Answer:
- value: $66,184.15
- interest: $6,184.15
Step-by-step explanation:
The future value can be computed using the formula for an annuity due. It can also be found using any of a variety of calculators, apps, or spreadsheets.
__
<h3>formula</h3>
The formula for the value of an annuity due with payment P, interest rate r, compounded n times per year for t years is ...
FV = P(1 +r/n)((1 +r/n)^(nt) -1)/(r/n)
FV = 5000(1 +0.06/4)((1 +0.06/4)^(4·3) -1)/(0.06/4) ≈ 66,184.148
FV ≈ 66,184.15
<h3>calculator</h3>
The attached calculator screenshot shows the same result. The calculator needs to have the begin/end flag set to "begin" for the annuity due calculation.
__
<h3>a) </h3>
The future value of the annuity due is $66,184.15.
<h3>b)</h3>
The total interest earned is the difference between the total of deposits and the future value:
$66,184.15 -(12)(5000) = 6,184.15
A total of $6,184.15 in interest was earned by the annuity.
The probability that it rains at most 2 days is 0.00005995233 and the variance is 0.516
<h3>The probability that it rains at most 2 days</h3>
The given parameters are:
- Number of days, n = 7
- Probability that it rains, p = 95%
- Number of days it rains, x = 2 (at most)
The probability that it rains at most 2 days is represented as:
P(x ≤ 2) = P(0) + P(1) + P(2)
Each probability is calculated as:

So, we have:



So, we have:
P(x ≤ 2) =0.00000002097 + 0.00000168821 + 0.00005824315
P(x ≤ 2) = 0.00005995233
Hence, the probability that it rains at most 2 days is 0.00005995233
<h3>The mean</h3>
This is calculated as:
Mean = np
So, we have:
Mean = 7 * 92%
Evaluate
Mean = 6.44
Hence, the mean is 6.44
<h3>The standard deviation</h3>
This is calculated as:
σ = √np(1 - p)
So, we have:
σ = √7 * 92%(1 - 92%)
Evaluate
σ = 0.718
Hence, the standard deviation is 0.718
<h3>The variance</h3>
We have:
σ = 0.718
Square both sides
σ² = 0.718²
Evaluate
σ² = 0.516
This represents the variance
Hence, the variance is 0.516
Read more about normal distribution at:
brainly.com/question/4079902
#SPJ1