Answer:
APY = 0.04 or 4%
Step-by-step explanation:
Given the annual percentage rate of 3.5% that is compounded quarterly, and a principal of $6,500:
We can use the following formula to solve for the annual percentage yield (APY):

where <em>r</em> = interest rate = 3.5% or 0.035
<em> n</em> = number of compounding periods per year = 4
We can plug in the values into the equation:




APY = 1.03546 - 1
APY = 0.04 or 4%
Answer:
Σ(-1)^kx^k for k = 0 to n
Step-by-step explanation:
The nth Maclaurin polynomials for f to be
Pn(x) = f(0) + f'(0)x + f''(0)x²/2! + f"'(0)x³/3! +. ......
The given function is.
f(x) = 1/(1+x)
Differentiate four times with respect to x
f(x) = 1/(1+x)
f'(x) = -1/(1+x)²
f''(x) = 2/(1+x)³
f'''(x) = -6/(1+x)⁴
f''''(x) = 24/(1+x)^5
To calculate with a coefficient of 1
f(0) = 1
f'(0) = -1
f''(0) = 2
f'''(0) = -6
f''''(0) = 24
Findinf Pn(x) for n = 0 to 4.
Po(x) = 1
P1(x) = 1 - x
P2(x) = 1 - x + x²
P3(x) = 1 - x+ x² - x³
P4(x) = 1 - x+ x² - x³+ x⁴
Hence, the nth Maclaurin polynomials is
1 - x+ x² - x³+ x⁴ +.......+(-1)^nx^n
= Σ(-1)^kx^k for k = 0 to n
Answer:
=AC or 7.8102=AC
Step-by-step explanation:
If we connect a line from point A to point C we create a triangle, and we can use pythagorean theorem to find this distance. So the line from point A to point C will be our hypotenuse and the other two distances will be out side lengths.

25+36=
61=
=AC or 7.8102=AC
I hope this helps you
✔cos^2A+sin^2A=1
✔1-cos^2A=sin^2A
✔cos2A=cos^2A-sin^2A
✔sin2A=2.sinA.cosA
secA=1/cosA
tgA=sinA/cosA
sin^2A/1/cos^2A-sin^2A/cos^2A
sin^2A.cos^2A/cos2A
2.sin^2A.cos^2A/cos2A
sin2A.2.sin2A/cos2A
tg2A.2.sin2A