Answer:
The answer is b, c, d, e
Explanation:
b. 2 N2O5 → 4 NO2 + O2
r = k [N2O5]^2 --> Second-order regarding global reaction
c. 2 HI → H2 + I2
r = k [HI]^2 --> Second-order regarding global reaction
d. 2 N2O → 2 N2 + O2
r = k [N2O]^2 --> Second-order regarding global reaction
e. 2 NO2 → 2 NO + O2
r = k [NO2]^2 --> Second-order regarding global reaction
Given :
Mass of oxygen containing carbon monoxide (CO) is 2.666 gram .
To Find :
How many grams of carbon (C) would be present in carbon monoxide (CO) that contains 2.666 grams of oxygen (O) .
Solution :
By law of constant composition , a given chemical compound always contains its component elements in fixed ratio (by mass) and does not depend on its source and method of preparation.
So , volume of solution does not matter .
Moles of oxygen ,
.
Now , molecule of CO contains 1 mole of C .
So , moles of C is also 0.167 mole .
Mass of carbon ,
.
Therefore , mass of carbon is 2 grams .
Hence , this is the required solution .
H2(g) +C2H4(g)→C2H6(g)
H-H +H2C =CH2→H3C-Ch3
2C -H bonds and one C-C bond are formed while enthalpy change (dH) of the reaction,
H-H: 432kJ/mol
C=C: 614kJ/mol
C-C: 413 kJ/mol
C-C: 347 kJ/mol
dH is equal to sum of the energies released during the formation of new bonds or negative sign, and sum of energies required to break old bonds or positive sign.
The bond which breaks energy is positive.
432+614 =1046kJ/mol
Formation of bond energy is negative
2(413) + 347 = 1173 kJ/mol
dH reaction is -1173 + 1046 =-127kJ/mol
Answer:
Formula of the compound = 
Explanation:
Given,
No. of mole of O = 8.20 mol
No. of mole of P = 3.30 mol
Chemical formula = 
Ratio of P and O = 

formula of the compound = 
Answer:
Answer is option B . This is because water is said to be highly permeable to the underground soil and thus nourishes it , whereas capillary action will make the water flow upward sllowly , but the water is going underground so it is permeability. Also soil is porous too , but that's only if the water is in the soil , here the water is caused to go underground by some force , so porosity isnt the right option
Explanation: