For this case we have that by definition, the equation of the line of the slope-intersection form is given by:

Where:
m: It's the slope
b: It is the cut-off point with the y axis
According to the statement we have the following equation:

To write the equation of the slope-intersection form we must add
to both sides of the equation:

Answer:
The correct option is option C
For the answer to the question above,
1. If we let x as the side of the square cut-out, the formula for the capacity (volume) of the food dish is:
V = (12 - 2x)(8 - 2x)(x)
V = 96x - 40x^2 + 4x^3
To find the zeros, we equate the equation to 0, so, the values of x that would result to zero would be:
x = 0, 6, 4
2. To get the value of x to obtain the maximum capacity, we differentiate the equation, equate it to zero, and solve for x.
dV/dx = 96 - 80x + 12x^2 = 0
x = 5.10, 1.57
The value of x that would give the maximum capacity is x = 1.57
3. If the volume of the box is 12, then the value of x can be solved using:
12 = 96x - 40x^2 + 4x^3
x = 0.13, 6.22, 3.65
The permissible value of x is 0.13 and 3.65
4. Increasing the cutout of the box increases the volume until its dimension reaches 1.57. After that, the value of the volume decreases it reaches 4.
5. V = (q -2x) (p - 2x) (x)
Answer:
180 pound
Step-by-step explanation:
<h3><u>p</u><u>e</u><u>r</u><u>c</u><u>e</u><u>n</u><u>t</u><u>a</u><u>g</u><u>e</u><u>:</u></h3>
<u>t</u><u>h</u><u>e</u><u> </u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u>1</u><u>2</u><u>%</u>
- 12% of 1500 pounds
- 12/100 × 1500
- 18,000/100
- 180
much steel will the new car model use is 180 pound