notice the first term is -10, and the common difference is 3, so we add 3 to get the next term.

check the picture below.
We are given: The year of the empire fell = 1610.
We have x as a variable that represents the year after the given year 1610.
According to problem, the year after the year number 1610 will have a number that greater than 1610.
We can make a statement for inequality to be written.
"The year after the 1610 is greater than 1610".
The year after the 1610 is x and we use gerater than symbol >.
So, we can setup an inequality as:
x > 1610 : It can be read as x is greater than 1610.
To solve this problem you must apply the proccedure shown below:
1. You have the following parent function given in the problem above: 
2. If you want to shift this parent function up six units, you only have the add a
, then, you will obtain the following new function:

Therefore, as you can see, the answer is: 
Answer:
mid point (x,y) = M (18, 24)
let J (- 4, - 2) be ( x1, y1)
L(a,b) be (x2,y2)
using midpoint formula
(x,y) = [(x1+x2)/2, (y1 + y2)/2]
or, (18, 24) = [(-4+a)/2, (-2+b)/2]
comparing corresponding element we get
18 = (-4+a)/2 24 =(-2+b)/2
or 36 = -4+ a or 48 = -2 +b
or a = 40 or b= 50
L(40,50)
Answer:
The Answer is 18 and 774 because 18 + 43 = 61 and 43 X 18 = 774