Answer:
regular tessellation
Step-by-step explanation:
A regular tessellation is a repeating pattern of congruent regular polygons on a plane with no gaps or overlaps.
Since a regular tessellation is with no gaps and overlaps, the only regular polygons that will tessellate are equilateral triangles, squares and regular hexagons. Therefore, there are only three types regular tessellations (ones made from squares, equilateral triangles and hexagons),
You are correct. The answer is choice DThe only way for g(x) to be differentiable at x = 0 is for two things to happen
(1) g(x) is continuous at x = 0
(2) g ' (x) is continuous at x = 0
To satisfy property (1) above, the value of b must be 1. This can be found by plugging x = 0 into each piece of the piecewise function and solving for b.
So the piecewise function becomes

after plugging in b = 1
--------------------------------
Now differentiate each piece with respect to x to get

The first piece of g ' (x) is always going to be equal to 1. The second piece is equal to zero when x = 0
Because -sin(x) = -sin(0) = 0
So there's this disconnect on g ' (x) meaning its not continuous
Therefore, the value b = 1 will not work.
So there are no values of b that work to satisfy property (1) and property (2) mentioned at the top.
Answer:
x=-16
Step-by-step explanation:
The given equation is:
x = 8a
which was written to find the value of x.
We have to find the value of x when the value of a is inserted as -2
So, putting the value
x = 8(-2)
x= -16
So the value of x when a = -2 is -16 ..
Answer:
B
Step-by-step explanation:
not so sure but it this might help