Answer:
The correct option is (c).
Step-by-step explanation:
The complete question is:
The data for the student enrollment at a college in Southern California is:
Traditional Accelerated Total
Math-pathway Math-pathway
Female 1244 116 1360
Male 1054 54 1108
Total 2298 170 2468
We want to determine if the probability that a student enrolled in an accelerated math pathway is independent of whether the student is female. Which of the following pairs of probabilities is not a useful comparison?
a. 1360/2468 and 116/170
b. 170/2468 and 116/1360
c. 1360/2468 and 170/2468
Solution:
If two events <em>A</em> and <em>B</em> are independent then:

In this case we need to determine whether a student enrolled in an accelerated math pathway is independent of the student being a female.
Consider the following probabilities:

If the two events are independent then:
P (F|A) = P(F)
&
P (A|F) = P (A)
But what would not be a valid comparison is:
P (A) = P(F)
Thus, the correct option is (c).
Answer:
free throws = 6
2 points shots = 3
Step-by-step explanation:
To do this we will have 2 incognitas.
x = number of free throws
y = number of shots of 2 points
x(1) + y(2) = 12
he says he made twice as many free throws as 2 points
x = 2y
2y(1) + y(2) = 12
2y + 2y = 12
4y = 12
y = 12/4
y = 3
x = 2y
x = 2*3
x = 6
free throws = 6
2 points shots = 3
First set up a proportion
240/160 = 320/200
Cross multiply and if the left equals the right it is similar.
Answer:
6ab + b^2 - 17a - 4b + 10
Step-by-step explanation:
-2(a+b-5)+3(-5a+2b)+b(6a+b-8)
Now we break the parenthesis. To break that, we multiply each of the value inside the parenthesis by the adjacent number. That is, for the first part of the expression, we multiply by -2, then by 3, and then by b.
Algebraic Operations need to be considered:
[ (-) x (-) = (+); (-) x (+) = (-)]
= [-(2*a) + (-2*b) - (-2*5)] + [3*(-5a) + (3*2b)] + [(b*6a) + (b*b) - (b*8)]
= -2a - 2b +10 -15a + 6b + 6ab + b^2 - 8b
Now, we will make the adjustment by the similarity value.
= - 2a - 15a - 2b + 6b - 8b + 6ab + b^2 + 10
= - 17a - 4b + 6ab + b^2 + 10
= 6ab + b^2 - 17a - 4b + 10
Therefore, the answer of the expression is = 6ab + b^2 - 17a - 4b + 10