Answer:
l = 0.13x+1025
Step-by-step explanation:
Let the monthly sales be x
Monthly income = $1025 + 13% of monthly sales
Monthly income = $1025 + 0.13x
Since l represent the monthly income
l = 1025+0.13x
Rearrange
l = 0.13x + 1025
Hence the linear equation representing the statement is l = 0.13x+1025
Answer:
4 + 36x is your expression
Step-by-step explanation:
4 x 1 = 4
4 x 9x = 36x
so 4 + 36x is your expression because you can't add numbers with different variables or if they don't even have one.
Answer:
(A) -3 ≤ x ≤ 1
Step-by-step explanation:
The given function is presented as follows;
h(x) = x² - 1
From the given function, the coefficient of the quadratic term is positive, and therefore, the function is U shaped and has a minimum value, with the slope on the interval to the left of <em>h</em> having a negative rate of change;
The minimum value of h(x) is found as follows;
At the minimum of h(x), h'(x) = d(h(x)/dx = d(x² - 1)/dx = 2·x = 0
∴ x = 0/2 = 0 at the minimum
Therefore, the function is symmetrical about the point where x = 0
The average rate of change over an interval is given by the change in 'y' and x-values over the end-point in the interval, which is the slope of a straight line drawn between the points
The average rate of change will be negative where the y-value of the left boundary of the interval is higher than the y-value of the right boundary of the interval, such that the line formed by joining the endpoints of the interval slope downwards from left to right
The distance from the x-value of left boundary of the interval that would have a negative slope from x = 0 will be more than the distance of the x-value of the right boundary of the interval
Therefore, the interval over which <em>h</em> has a negative rate of change is -3 ≤ x ≤ 1
Answer:
<h2><em>
y = 8, ST = 31 and RT = 81</em></h2>
Step-by-step explanation:
Given RS = 6y+2, ST=3y +7, and RT=13y-23, the vector formula is true for the equations given; RS+ST = RT
Om substuting the expression into the formula;
6y+2+3y +7 = 13y - 23
collect the like terms
6y+3y-13y+2+7+23 = 0
-4y+32 = 0
Subtract 32 from both sides
-4y+32-32 = 0-32
-4y = -32
y = -32/-4
y = 8
Since ST = 3y+7. we will substitute y = 8 into the exprrssion to get ST
ST = 3(8)+7
ST = 24+7
ST = 31
Similarly,
RT = 13y-23
RT = 13(8)-23
RT = 104-23
RT = 81
<em>Hence y = 8, ST = 31 and RT = 81</em>