Answer:
Option D is correct.
The equation with roots 3 plus or minus square root 2 is x² - 6x + 7
Step-by-step explanation:
The roots of the unknown equation are
3 ± √2, that is, (3 + √2) and (3 - √2)
The equation can then be reconstructed by writing these roots as the solutions of the quadratic equation
x = (3 + √2) or x = (3 - √2)
The equation is this
[x - (3 + √2)] × [x - (3 - √2)]
(x - 3 - √2) × (x - 3 + √2)
x(x - 3 + √2) - 3(x - 3 + √2) - √2(x - 3 + √2)
= x² - 3x + x√2 - 3x + 9 - 3√2 - x√2 + 3√2 - 2
Collecting like terms
= x² - 3x - 3x + x√2 - x√2 - 3√2 + 3√2 + 9 - 2
= x² - 6x + 7
Hope this Helps!!!
Answer:
The correct order is :
1. Determine the null and alternative hypothesis.
2. Select a sample and compute the z - score for the sample mean.
3. Determine the probability at which you will conclude that the sample outcome is very unlikely.
4. Make a decision about the unknown population.
Step-by-step explanation:
The correct order of the steps of a hypothesis test is given following
1. Determine the null and alternative hypothesis.
2. Select a sample and compute the z - score for the sample mean.
3. Determine the probability at which you will conclude that the sample outcome is very unlikely.
4. Make a decision about the unknown population.
These steps are performed in the given sequence to test a hypothesis.
<h2>
Answer:37 paintings of $50 and 15 paintings of $75</h2>
Step-by-step explanation:
Let
be the number of paintings Ella sells for $
.
Let
be the number of paintings Ella sells for $
.
Profit made through $
paintings is 
Profit made through $
paintings is 
So,total profit is given by 
It is given that total profit is $
So,
..(i)
Given that the total number of prints is 
So,
..(ii)
using (i) and (ii),


Answer:
No they are proprotional.
Step-by-step explanation:
the tables eqaution is
y=3x+1
Answer: 1,365 possible special pizzas
Step-by-step explanation:
For the first topping, there are 15 possibilities, for the second topping, there are 14 possibilities, for the third topping, there are 13 possibilities, and for the fourth topping, there are 12 possibilities. This is how you find the number of possible ways.
15 * 14 * 13 * 12 = 32,760
Now, you need to divide that by the number of toppings you are allowed to add each time you add a topping.
4 * 3 * 2 * 1 = 24
32,760 / 24 = 1,365
There are 1,365 possible special pizzas