98 days = (98 ⁄ 7) weeks = 14 weeks
<span>Po = initial population = 5 </span>
<span>Ƭ = doubling time in weeks </span>
<span>t = elapsed time in weeks </span>
<span>P{t} = population after "t" weeks </span>
<span> P{t} = (Po)•2^(t ⁄ Ƭ) </span>
<span> P{t} = (Po)•2^(t ⁄ 4) </span>
<span> P{t} = 5•2^(t ⁄ 4) </span>
<span> P{14} = (5)•2^(14 ⁄ 4) … t = 14 weeks = 98 days </span>
<span> P{14} = 56 … population after 14 weeks</span>
Answer:
9.
Step-by-step explanation:
12 dividido por 4 es 3. 3 por 3 es 9
F(4)=(4-1)+2*4=11...
This seems a bit too easy though, did you mean f(n)=f(n-1)+2n ? In this case :
f(1)=16
f(2)=16+2*2=20
f(3)=20+2*3=26
f(4)=26+2*4=34
Its f(x)=5x+5 (this is filling spaceskalekkejdkskwnedododkw)