(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2
Answer: The correct answer will be C. (Since the last comment got deleted smh)
3(2x/5)
Final result :
6x
——
5
Step by step solution :
Step 1 :
x
Simplify —
5
Equation at the end of step 1 :
x
3 • (2 • —)
5
Step 2 :
Final result :
6x
——
5
Answer:

Step-by-step explanation:
The length of the arc is directly proportional to the angle of the arc, whose measure is determined by simple rule of three:


Answer:
It's exponential growth.
Step-by-step explanation:
b/c any value of b that's greater than 1 is an exponential growth function, and anything that's 0<b<1 or if b<0, the function would be an exponential decay.