Si me amp Jake I help u it’s Definitely
From the given, it is stated that after Amelia took 14 out of the box, Ramon took half of those which remained and he had 16 tiles. The number of tiles left after Amelia took hers is equal to twice of 16 which is equal to 32 tiles.
To determine the number of tiles during the start, we can add the 14 tiles from the calculated 32 tiles.
n = 14 tiles + 32 tiles
n = 46 tiles
<em>Answer: 46 tiles</em>
Answer:
- 3.75 bags of ChowChow
- 0.75 bags of Kibble
Step-by-step explanation:
The constraints on protein, minerals, and vitamins give rise to the inequalities ...
40c +30k ≥ 150 . . . . . . required protein
20c +20k ≥ 90 . . . . . . required minerals
10c +30k ≥ 60 . . . . . . . required vitamins
And we want to minimize 10c +12k.
The graph shows the vertices of the feasible region in (c, k) coordinates. The one that minimizes cost is (c, k) = (3.75, 0.75).
To minimize cost, the daily feed should be ...
- 3.75 bags of ChowChow
- 0.75 bags of Kibble
Daily cost will be $46.50.
A vertical line i believe since x is constant
Answer:
When we have something like:
![\sqrt[n]{x}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D)
It is called the n-th root of x.
Where x is called the radicand, and n is called the index.
Then the term:
![\sqrt[4]{16}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16%7D)
is called the fourth root of 16.
And in this case, we can see that the index is 4, and the radicand is 16.
At the end, we have the question: what is the 4th root of 16?
this is:
![\sqrt[4]{16} = \sqrt[4]{4*4} = \sqrt[4]{2*2*2*2} = 2](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16%7D%20%3D%20%5Csqrt%5B4%5D%7B4%2A4%7D%20%20%3D%20%5Csqrt%5B4%5D%7B2%2A2%2A2%2A2%7D%20%3D%202)
The 4th root of 16 is equal to 2.