1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ElenaW [278]
3 years ago
12

For what values of x and y would AABC-ADEF?

Mathematics
2 answers:
Murrr4er [49]3 years ago
8 0
C
hope this helped!!!
prohojiy [21]3 years ago
7 0
The answer is c you are so
You might be interested in
Type the integer that makes the following addition sentence true for Brainliest!!!!
Rasek [7]

Answer:

-10

Step-by-step explanation:

22-12=10

CHECK:

-12+(-10)=-22 (correct, and proven)

8 0
3 years ago
1) UN MOVIL A SE MUEVE DESDE UN PUNTO CON VELOCIDAD CONSTANTE DE 20m/s EN EL MISMO INSTANTE A UNA DISTANCIA DE 1200m, OTRO MOVIL
alisha [4.7K]

Answer:

El móvil B necesita 60 segundos para alcanzar al móvil A y le alcanza una distancia de 2400 metros con respecto al punto de referencia.

Step-by-step explanation:

Supóngase que cada movil viaja en el mismo plano y que el móvil B se localiza inicialmente en la posición x = 0\,m, mientras que el móvil A se encuentra en la posición x = 1200\,m. Ambos móviles viajan a rapidez constante. Si el móvil B alcanza al móvil A después de cierto tiempo, el sistema de ecuaciones cinemáticas es el siguiente:

Móvil A

x_{A} = 1200\,m+\left(20\,\frac{m}{s} \right)\cdot t

Móvil B

x_{B} = \left(40\,\frac{m}{s} \right)\cdot t

Donde:

x_{A}, x_{B} - Posiciones finales de cada móvil, medidas en metros.

t - Tiempo, medido en segundos.

Si x_{A} = x_{B}, el tiempo requerido por el móvil B para alcanzar al móvil A es:

1200\,m+\left(20\,\frac{m}{s} \right)\cdot t = \left(40\,\frac{m}{s} \right)t

1200\,m = \left(20\,\frac{m}{s} \right)\cdot t

t = \frac{1200\,m}{20\,\frac{m}{s} }

t = 60\,s

El móvil B necesita 60 segundos para alcanzar al móvil A.

Ahora, la distancia se obtiene por sustitución directa en cualquiera de las ecuaciones cinemáticas:

x_{B} = \left(40\,\frac{m}{s} \right)\cdot (60\,s)

x_{B} = 2400\,m

El móvil B alcanza al móvil A a una distancia de 2400 metros con respecto al punto de referencia.

3 0
3 years ago
Which is the next term in the pattern 1/12, 4/15, 9/18, 16/21
Amiraneli [1.4K]
25/24 is the answer.
3 0
3 years ago
ITS TIMED PLEASE HELP​
Lubov Fominskaja [6]

Answer:

The graph of the function f(x)=\frac{1}{2}x^{2}-4x+5 has a minimum located at (4,-3)

Step-by-step explanation:

we know that

The equation of a vertical parabola in vertex form is equal to

f(x)=a(x-h)^{2}+k

where

a is a coefficient

(h,k) is the vertex of the parabola

If a > 0 the parabola open upward and the vertex is a minimum

If a < 0 the parabola open downward and the vertex is a maximum

In this problem

The coefficient a must be positive, because we need to find a minimum

therefore

Check the option C and the option D

Option C

we have

f(x)=\frac{1}{2}x^{2}-4x+5

Convert to vertex form

f(x)-5=\frac{1}{2}x^{2}-4x

Factor the leading coefficient

f(x)-5=\frac{1}{2}(x^{2}-8x)

f(x)-5+8=\frac{1}{2}(x^{2}-8x+16)

f(x)+3=\frac{1}{2}(x^{2}-8x+16)

f(x)+3=\frac{1}{2}(x-4)^{2}

f(x)=\frac{1}{2}(x-4)^{2}-3

The vertex is the point (4,-3) ( is a minimum)

therefore

The graph of the function f(x)=\frac{1}{2}x^{2}-4x+5 has a minimum located at (4,-3)

5 0
3 years ago
Fabian plots the linear function f below.
Blizzard [7]

Answer:

it is d

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Identify the 12th term of a geometric sequence where a1 = 8 and a6 = –8,192.
    6·2 answers
  • The original price of water skis was $200. What is the percent of discount?
    11·1 answer
  • Estimate the following deference using front-end estimation.PLS HURRY!<br><br> 788.44 - 225.6
    12·1 answer
  • Find the zeros of the function.<br> f(x) = 9x^3 + 18 x^2 - 135x
    9·1 answer
  • Frank has 24 pennies, 62 nickels, 55 dimes, 16 quarters, and 19 fifty-cent pieces. How much money does he have?
    9·1 answer
  • The following items appear on the balance sheet of a company with a
    9·1 answer
  • If x represents one of the equal sides of the triangle, then which equation can be used to solve the problem?
    9·1 answer
  • Continue each pattern with the next two numbers
    8·1 answer
  • Write the equation of the line that passes through the given point and is perpendicular to the given line.
    11·1 answer
  • 12.5,−10,−7.5,x; The mean is 11.5.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!