1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Klio2033 [76]
3 years ago
10

Pls help I will give BRAINLIEST ​

Mathematics
2 answers:
Elena L [17]3 years ago
8 0

Answer: M<2=38 m<3=142 m<4=38

Step-by-step explanation:

142+142+38+38=360-Both side

142+38=180- one side

180-142=38

Veseljchak [2.6K]3 years ago
5 0

Answers:

  • angle 2 = 38 degrees
  • angle 3 = 142 degrees
  • angle 4 = 38 degrees

========================================================

Explanation:

Angle 1 is given to be 142 degrees. Angle 3 is equal to this measure since vertical angles are congruent. Vertical angles are angles that form when you have an X shape like this. They are opposite angles.

Angles 2 and 4 are the other pair of congruent vertical angles. This means angle 2 = angle 4.

Note how angle 1 and angle 2 form a straight line. These two angles add to 180.

(angle1) + (angle2) = 180

(142) + (angle2) = 180

angle2 = 180-142

angle2 = 38 degrees

angle 4 is also 38 degrees since angles 2 and 4 are a congruent vertical angle pairing.

You might be interested in
Mr. Green’s lawnmower holds 600milliliters of gasoline in the tank. He just filled his 6-liter gas can at the station. How many
yanalaym [24]

Answer: 10 times

Step-by-step explanation:

1 litre = 1000 ml

6 litres = 6000 ml

Lawnmover holds 600 ml

So 6000 ml will fill

6000/600 = 10 times

5 0
3 years ago
How do you determine if a set of ordered pairs is a function or not?
Serggg [28]
<span>You could set up the relation as a table of ordered pairs. Then, test to see if each element in the domain is matched with exactly one element in the range. If so, you have a function! Watch this tutorial to see how you can determine if a relation is a function.</span>
4 0
3 years ago
Read 2 more answers
Please show steps to solve y=3\2x-2 y=x+2
castortr0y [4]
Substitute what you know y is equal to into the equation:
y = x + 2
3/2x - 2 = x + 2

Then you can simplify your equation by multiplying both sides by 2 to eliminate the fraction which will give you:

3x - 4 = 2x + 4

Add the -4 to the other side to get 8 and subtract the 2x from the 3x so you have:

x = 8    Now solve for y by substituting your value for x into the other equation:
y = 3/2(8) - 2    Simplify by combining your numbers and you get:
y = 10     Check your answer by substituting y and x into the original equation:
(10) = (8) - 2
Correctly done! So your answers are x = 8 and y = 10
6 0
4 years ago
Si el área de un cuadrado es 144, ¿cuál es su perímetro?
andreyandreev [35.5K]

Answer:

48cm

Step-by-step explanation:

6 0
3 years ago
Use the form of the definition of the integral given in the theorem to evaluate the integral. ∫ 0 − 2 ( 7 x 2 + 7 x ) d x
Murrr4er [49]

Answer:

\int _{-2}^07x^2+7xdx=\frac{14}{3}

Step-by-step explanation:

The definite integral of a continuous function <em>f</em> over the interval [a,b] denoted by \int\limits^b_a {f(x)} \, dx, is the limit of a Riemann sum as the number of subdivisions approaches infinity. That is,

\int\limits^b_a {f(x)} \, dx=\lim_{n \to \infty} \sum_{i=1}^{n}\Delta x \cdot f(x_i)

where \Delta x = \frac{b-a}{n} and x_i=a+\Delta x\cdot i

To evaluate the integral

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx

you must:

Find \Delta x

\Delta x = \frac{b-a}{n}=\frac{0+2}{n}=\frac{2}{n}

Find x_i

x_i=a+\Delta x\cdot i\\x_i=-2+\frac{2i}{n}

Therefore,

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} f(-2+\frac{2i}{n})

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx=\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7[(-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})]\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} 4-\frac{8i}{n}+\frac{4i^2}{n^2} -2+\frac{2i}{n}\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2

\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2\\\\\lim_{n \to \infty}\frac{14}{n}[ \sum_{i=1}^{n} \frac{4i^2}{n^2}-\sum_{i=1}^{n}\frac{6i}{n}+\sum_{i=1}^{n}2]\\\\\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\sum_{i=1}^{n}i^2 -\frac{6}{n}\sum_{i=1}^{n}i+\sum_{i=1}^{n}2]

We can use the facts that

\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}

\sum_{i=1}^{n}i=\frac{n(n+1)}{2}

\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\cdot \frac{n(n+1)(2n+1)}{6}-\frac{6}{n}\cdot  \frac{n(n+1)}{2}+2n]\\\\\lim_{n \to \infty}\frac{14}{n}[-n+\frac{2\left(n+1\right)\left(2n+1\right)}{3n}-3]\\\\\lim_{n \to \infty}\frac{14\left(n^2-3n+2\right)}{3n^2}

\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(\frac{n^2-3n+2}{n^2}\right)\\\\\mathrm{Divide\:by\:highest\:denominator\:power:}\:1-\frac{3}{n}+\frac{2}{n^2}\\\\\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(1-\frac{3}{n}+\frac{2}{n^2}\right)\\\\\frac{14}{3}\left(\lim _{n\to \infty \:}\left(1\right)-\lim _{n\to \infty \:}\left(\frac{3}{n}\right)+\lim _{n\to \infty \:}\left(\frac{2}{n^2}\right)\right)\\\\\frac{14}{3}\left(1-0+0\right)\\\\\frac{14}{3}

Thus,

\int _{-2}^07x^2+7xdx=\frac{14}{3}

5 0
4 years ago
Other questions:
  • PLEASE HELP PICTURE IS SHOWN
    15·1 answer
  • What would happen to the sum of a geometric series if the ratio was 1?
    12·1 answer
  • 2. Jim buys a bond for $250 with a 8% return and a maturity of five years. How much total will Jim
    7·1 answer
  • Find the missing endpoint if S is the midpoint RT. 1. R(9-4) and S(2,-1); fine T
    12·1 answer
  • Which expression is equivalent to the expression shown?
    14·2 answers
  • What is equivalent to the fraction 3/8
    5·1 answer
  • A__ is any set of ordered pairs.
    12·1 answer
  • A rectangular bin with an open top and volume of 38.72 cubic feet is to be built. The length of its base must be twice the width
    6·1 answer
  • It costs five dollars to get into the local skating rink. The video games cost 75¢ each to play. If all you have to spend on ska
    14·1 answer
  • 100 points and brainlyest !!! ONLY ANSWER IF U KNOW THE ANSWER !!!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!