To make it easier, you calculate the volume of the first aquarium.
1st aquarium:
V = L x W x H
V = 8 x 9 x 13
V = 72 x 13
V = 936 in.
Rate: 936 in./2 min.
Now that you've got the volume and rate of the first aquarium, you can find how many inches of the aquarium is filled within a minute, which is also known as the unit rate. To do that, you have to divide both the numerator and denominator by their least common multiple, which is 2. 936 divided by 2 is 468 and 2 divided by 2 is 1.
So the unit rate is 468 in./1 min. Now that you've got the unit rate, you can find out how long it'll take to fill the second aquarium up by finding its volume first.
2nd aquarium:
V = L x W x H
V = 21 x 29 x 30
V = 609 x 30
V 18,270 inches
Calculations:
Now, you divide 18,270 by 468 to find how many minutes it will take to fill up the second aquarium. 18,270 divided by 468 is about 39 (the answer wasn't exact, so I said "about").
2nd aquarium's rate:
18,270 in./39 min.
As a result, it'll take about 39 minutes to fill up an aquarium measuring 21 inches by 29 inches by 30 inches using the same hose. I really hope I helped and that you understood my explanation! :) If I didn't, I'm sorry. I tried. :(
The line is parallel so it has the same slope as the other line, -4.
Substitute the x and y variables with the given points and find the y-intercept.
(-8, 6)
y = -4x + b
6 = -4(8) + b
6 = -32 + b
6 + 32 = b
38 = b
So the equation is:
y = -4 + 38
IF IT EQUALS 0
1. find two number that multiplied to 48 and adds to 14, which are 6 and 8.
2. substitute the new numbers in with x to get x^2 + 6x + 8x + 48.
3. factor out the x and the 8 to get x(x+6)+8(x+6).
4. x = -6, x = -8
IF IT DOES NOT EQUAL 0
then (x+6)*(x+8) is your answer.
Answer:
150 ft. x 400 ft. = 60,000
Step-by-step explanation:
Answer:
Bottom left graph
Step-by-step explanation:
We have to use what is called the zero-interval test [test point] in order to figure out which portion of the graph these inequalities share:
−2x + y ≤ 4 >> Original Standard Equation
+ 2x + 2x
_________
y ≤ 2x + 4 >> Slope-Intercept Equation
−2[0] + 0 ≤ 4
0 ≤ 4 ☑ [We shade the part of the graph that CONTAINS THE ORIGIN, which is the right side.]
[We shade the part of the graph that does not contain the origin, which is the left side.]
So, now that we got that all cleared up, we can tell that the graphs share a region in between each other and that they both have POSITIVE <em>RATE OF CHANGES</em> [<em>SLOPES</em>], therefore the bottom left graph matches what we want.
** By the way, you meant
because this inequality in each graph is a <em>dashed</em><em> </em><em>line</em>. It is ALWAYS significant that you be very cautious about which inequalities to choose when graphing. Inequalities can really trip some people up, so once again, please be very careful.
I am joyous to assist you anytime.