1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kisachek [45]
3 years ago
11

Point F is on the line CD. Find the measure of angle CFE

Mathematics
1 answer:
AlexFokin [52]3 years ago
3 0

Answer:

∠ CFE and ∠ DFE are adjacent angles and are supplementary, sum to 180°

∠ CFE + 152° = 180° ( subtract 152° from both sides )

∠ CFE = 28°

Step-by-step explanation:

You might be interested in
I could use a little help with this one. i'm rusty.<br> -3(x+2)-7 = 5x + 7
Pie

Answer:

-3(x+2)-7 = 5x + 7

-3x - 6 - 7 = 5x + 7

-3x - 13 = 5x + 7

-20 = 8x

x = -2.5

7 0
3 years ago
Read 2 more answers
Find the remaining trigonometric ratios of θ if csc(θ) = -6 and cos(θ) is positive
VikaD [51]
Now, the cosecant of θ is -6, or namely -6/1.

however, the cosecant is really the hypotenuse/opposite, but the hypotenuse is never negative, since is just a distance unit from the center of the circle, so in the fraction -6/1, the negative must be the 1, or 6/-1 then.

we know the cosine is positive, and we know the opposite side is -1, or negative, the only happens in the IV quadrant, so θ is in the IV quadrant, now

\bf csc(\theta)=-6\implies csc(\theta)=\cfrac{\stackrel{hypotenuse}{6}}{\stackrel{opposite}{-1}}\impliedby \textit{let's find the \underline{adjacent side}}&#10;\\\\\\&#10;\textit{using the pythagorean theorem}\\\\&#10;c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a&#10;\qquad &#10;\begin{cases}&#10;c=hypotenuse\\&#10;a=adjacent\\&#10;b=opposite\\&#10;\end{cases}&#10;\\\\\\&#10;\pm\sqrt{6^2-(-1)^2}=a\implies \pm\sqrt{35}=a\implies \stackrel{IV~quadrant}{+\sqrt{35}=a}

recall that 

\bf sin(\theta)=\cfrac{opposite}{hypotenuse}&#10;\qquad\qquad &#10;cos(\theta)=\cfrac{adjacent}{hypotenuse}&#10;\\\\\\&#10;% tangent&#10;tan(\theta)=\cfrac{opposite}{adjacent}&#10;\qquad \qquad &#10;% cotangent&#10;cot(\theta)=\cfrac{adjacent}{opposite}&#10;\\\\\\&#10;% cosecant&#10;csc(\theta)=\cfrac{hypotenuse}{opposite}&#10;\qquad \qquad &#10;% secant&#10;sec(\theta)=\cfrac{hypotenuse}{adjacent}

therefore, let's just plug that on the remaining ones,

\bf sin(\theta)=\cfrac{-1}{6}&#10;\qquad\qquad &#10;cos(\theta)=\cfrac{\sqrt{35}}{6}&#10;\\\\\\&#10;% tangent&#10;tan(\theta)=\cfrac{-1}{\sqrt{35}}&#10;\qquad \qquad &#10;% cotangent&#10;cot(\theta)=\cfrac{\sqrt{35}}{1}&#10;\\\\\\&#10;sec(\theta)=\cfrac{6}{\sqrt{35}}

now, let's rationalize the denominator on tangent and secant,

\bf tan(\theta)=\cfrac{-1}{\sqrt{35}}\implies \cfrac{-1}{\sqrt{35}}\cdot \cfrac{\sqrt{35}}{\sqrt{35}}\implies \cfrac{-\sqrt{35}}{(\sqrt{35})^2}\implies -\cfrac{\sqrt{35}}{35}&#10;\\\\\\&#10;sec(\theta)=\cfrac{6}{\sqrt{35}}\implies \cfrac{6}{\sqrt{35}}\cdot \cfrac{\sqrt{35}}{\sqrt{35}}\implies \cfrac{6\sqrt{35}}{(\sqrt{35})^2}\implies \cfrac{6\sqrt{35}}{35}
3 0
3 years ago
Solve similar triangles (advanced)<br> Solve for x<br> x=?
lesya692 [45]

Answer:

x = 1.2

Step-by-step explanation:

AD/AB = DE/BC (Similarity Theorem)

AD = 6 + 4 = 10

AB = 6

DE = 2

BC = x

Plug in the values

10/6 = 2/x

Cross multiply

10*x = 2*6

10x = 12

Divide both sides by 10

x = 12/10

x = 1.2

8 0
3 years ago
A package contains 6 cups of cereal. Each serving is 1/4 cup of cereal. How many serving are there in all?
Marina CMI [18]

Answer:

1 and 2/4 I think

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
10 points, doing this one again because I got a wrong answer last time but regardless thank you for trying to help​
Alik [6]

Hey ! there

Answer:

  • Value of missing side i.e. TE is <u>1</u><u>2</u><u> </u><u>feet</u>

Step-by-step explanation:

In this question we are provided with a <u>right</u><u> </u><u>angle </u><u>triangle</u> having <u>TS </u><u>-</u><u> </u><u>35</u><u> </u><u>ft </u><u>and</u><u> </u><u>SE </u><u>-</u><u> </u><u>37</u><u> </u><u>ft </u>. And we are asked to find the missing side that is <u>TE </u>using Pythagorean Theorem .

<u>Pythagorean Theorem :</u> -

According to Pythagorean Theorem sum of squares of perpendicular and base is equal to square of hypotenuse in a right angle triangle i.e.

  • H² = P² + B²

<u>Where </u><u>,</u>

  • H refers to <u>Hypotenuse</u>

  • P refers to <u>Perpendicular</u>

  • B refers to <u>Base</u>

<u>Solution</u><u> </u><u>:</u><u> </u><u>-</u>

In the given triangle ,

  • Base = <u>TE </u>

  • Perpendicular = <u>TS </u><u>(</u><u> </u><u>35</u><u> </u><u>feet </u><u>)</u>

  • Hypotenuse = <u>SE </u><u>(</u><u> </u><u>37</u><u> </u><u>feet </u><u>)</u>

Now applying Pythagorean Theorem :

\quad \longmapsto \qquad \:SE {}^{2}  = TS {}^{2}  + TE {}^{2}

Substituting values :

\quad \longmapsto \qquad \:37 {}^{2}  = 35 {}^{2}  + TE {}^{2}

Simplifying it ,

\quad \longmapsto \qquad \:1369 = 1225  + TE {}^{2}

Subtracting 1225 on both sides :

\quad \longmapsto \qquad \:1369 - 1225  = \cancel{1225}  + TE {}^{2}  -  \cancel{1225}

We get ,

\quad \longmapsto \qquad \:144 = TE {}^{2}

Applying square root to both sides :

\quad \longmapsto \qquad \ \sqrt{ 144} =  \sqrt{TE {}^{2}}

We get ,

\quad \longmapsto \qquad \:     \red{\underline{\boxed{\frak{TE  = 12 \: feet}}}} \quad \bigstar

  • <u>Henceforth</u><u> </u><u>,</u><u> </u><u>value </u><u>of </u><u>missing </u><u>side </u><u>is </u><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>feet </u></em><em><u>.</u></em>

<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>

Now we are verifying our answer using Pythagorean Theorem . We know that according to Pythagorean Theorem ,

  • SE² = TS² + TE²

Substituting value of SE , TS and TE :

  • 37² = 35² + <u>1</u><u>2</u><u>²</u>

  • 1369 = 1225 + 144

  • 1369 = 1369

  • L.H.S = R.H.S

  • Hence , Verified .

<u>Therefore</u><u> </u><u>,</u><u> </u><u>our</u><u> answer</u><u> is</u><u> correct</u><u> </u><u>.</u>

<h2><u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
6 0
2 years ago
Read 2 more answers
Other questions:
  • The sum of two numbers is 150 and the ratio of the same two numbers is 3 to 2 . find the bigger number
    6·2 answers
  • Two train whistles have identical frequencies of 180 Hz. When one train is at rest in the station, sounding its whistle, a beat
    5·1 answer
  • Solve for v <br> p=mv <br> Answer choices: <br> M=v/p<br> V=p/m<br> V=m/p<br> M=p/v
    7·2 answers
  • Can someone help me with this problem and give the answer
    8·1 answer
  • 250 of a number is 60. Find the number
    6·1 answer
  • Find the shaded AREA​
    10·1 answer
  • The equation C = 0.20x + 50 gives the cost C in dollars for renting a truck and
    8·1 answer
  • Is this correct and if not what am I missing?
    12·2 answers
  • Please answer correctly math problemo
    14·1 answer
  • Can teachers see what my kids did wrong on IMC online?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!