Answer:
D
Step-by-step explanation:
Y = -2.8x +69.4
Let y represent units of inventory, and x represent days since the last replenishment. We are given points (x, y) = (3, 61) and (13, 33). The line through these points can be described using the 2-point form of the equation of a line:
... y -y1 = (y2-y1)/(x2 -x1)(x -x1)
Filling in the given point values, we have ...
... y -61 = (33 -61)/(13 -3)(x -3)
Simplifying and adding 61, we get ...
... y = -2.8x +69.4
Answer: The company should produce 7 skateboards and 16 rollerskates in order to maximize profit.
Step-by-step explanation: Let the skateboards be represented by s and the rollerskates be represented by r. The available amount of labour is 30 units, and to produce a skateboard requires 2 units of labor while to produce a rollerskate requires 1 unit. This can be expressed as follows;
2s + r = 30 ------(1)
Also there are 40 units of materials available, and to produce a skateboard requires 1 unit while a rollerskate requires 2 units. This too can be expressed as follows;
s + 2r = 40 ------(2)
With the pair of simultaneous equations we can now solve for both variables by using the substitution method as follows;
In equation (1), let r = 30 - 2s
Substitute for r into equation (2)
s + 2(30 - 2s) = 40
s + 60 - 4s = 40
Collect like terms,
s - 4s = 40 - 60
-3s = -20
Divide both sides of the equation by -3
s = 6.67
(Rounded up to the nearest whole number, s = 7)
Substitute for the value of s into equation (1)
2s + r = 30
2(7) + r = 30
14 + r = 30
Subtract 14 from both sides of the equation
r = 16
Therefore in order to maximize profit, the company should produce 7 skateboards and 16 rollerskates.
Answer:
The length of AB is 7.45 units.
Step-by-step explanation:
You can find the length of AB using Cosine Rule, cosθ = adj./hypo. :
θ = 20°
adj. = 7 units
hypo. = AB
cos 20° = 7/AB
AB = 7/cos 20°
= 7.45 units (3s.f)