Answer:
a) x=(t^2)/2+cos(t), b) x=2+3e^(-2t), c) x=(1/2)sin(2t)
Step-by-step explanation:
Let's solve by separating variables:

a) x’=t–sin(t), x(0)=1

Apply integral both sides:

where k is a constant due to integration. With x(0)=1, substitute:

Finally:

b) x’+2x=4; x(0)=5

Completing the integral:

Solving the operator:

Using algebra, it becomes explicit:

With x(0)=5, substitute:

Finally:

c) x’’+4x=0; x(0)=0; x’(0)=1
Let
be the solution for the equation, then:

Substituting these equations in <em>c)</em>

This becomes the solution <em>m=α±βi</em> where <em>α=0</em> and <em>β=2</em>
![x=e^{\alpha t}[Asin\beta t+Bcos\beta t]\\\\x=e^{0}[Asin((2)t)+Bcos((2)t)]\\\\x=Asin((2)t)+Bcos((2)t)](https://tex.z-dn.net/?f=x%3De%5E%7B%5Calpha%20t%7D%5BAsin%5Cbeta%20t%2BBcos%5Cbeta%20t%5D%5C%5C%5C%5Cx%3De%5E%7B0%7D%5BAsin%28%282%29t%29%2BBcos%28%282%29t%29%5D%5C%5C%5C%5Cx%3DAsin%28%282%29t%29%2BBcos%28%282%29t%29)
Where <em>A</em> and <em>B</em> are constants. With x(0)=0; x’(0)=1:

Finally:

The final product is -24(2) which equals - 48.
It’s -0.45 and the next to numbers are 5.35 and 4.9
Answer:
Mean: $16.1
Median: $15.00
Mode:$15.00
The mode best describes the data, so the mean is the better measure of variability.
Step-by-step explanation:
How to find the mean:
Add up each value on the data set, then divide it by the number of values on the data set. (Example: $17.00 + $15.50+$15.00+$18.00+$15.00= 80.5/5=16.1)
How to find the median: Order your values from least to greatest, then find the value in the center.
How to find mode: Look for the most frequent value in the data set. What value shows up the most?